1
|
Nie X, Wang P, Nie X, Wang J, Wang J, Li X, Tian Z, Guo H, Wang Y. Unraveling cadmium tolerance mechanisms in Betula platyphylla through a hierarchical gene regulatory network in hormone signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109878. [PMID: 40188532 DOI: 10.1016/j.plaphy.2025.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
Cadmium (Cd), a toxic heavy metal, is a significant pollutant that impacts plant productivity. While some studies have been conducted, the underlying mechanisms by which plants respond to Cd stress remain largely unclear. Here, we performed RNA-seq analysis of Betula platyphylla (birch) under CdCl2 treatment. The findings revealed a substantial enrichment of differentially expressed genes (DEGs) in pathways associated with plant hormones. A gene regulatory network (GRN) was constructed, and the regulatory relationships between genes were determined using a partial correlation coefficient algorithm. The GRN comprises 2151 regulatory interactions, including 7 transcription factors (TFs) from the first layer, 25 TFs from the second layer, and 168 structural genes from the third layer, all of which are linked to ten enriched biological processes. ChIP-PCR and qRT-PCR assays validated approximately 85.2 % of the predicted interactions between the first and second layers, along with 88.3 % of the interactions between the second and third layers, supporting the validity of the GRN. Eighteen genes were selected from the third layer of multiple biological pathways to analyze their functions, and the results indicated that these genes can enhance Cd tolerance in birch plants. Additionally, two TFs in the first layer, BpHD-zip7 and BpRAV1, were successfully introduced into birch plants, confirming their role in improving Cd tolerance. Our findings elucidate the regulatory mechanisms and key determinants that function in the adaptation of B. platyphylla to Cd stress.
Collapse
Affiliation(s)
- Xianguang Nie
- College of Horticultural, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Pengyu Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xianhui Nie
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jingxin Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jingwen Wang
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiaofu Li
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhen Tian
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huiyan Guo
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Yucheng Wang
- College of Horticultural, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
2
|
Jiang B, Li Y, Shi J, Chalasa DD, Zhang L, Wu S, Xu T. Identification and Network Construction of mRNAs, miRNAs, lncRNAs, and circRNAs in Sweetpotato ( Ipomoea batatas L.) Adventitious Roots Under Salt Stress via Whole-Transcriptome RNA Sequencing. Int J Mol Sci 2025; 26:1660. [PMID: 40004124 PMCID: PMC11854956 DOI: 10.3390/ijms26041660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Sweetpotato is the seventh largest crop worldwide, and soil salinization is a major environmental stress limiting its yield. Recent studies have shown that noncoding RNAs (ncRNAs) play important regulatory roles in plant responses to abiotic stress. However, ncRNAs in sweetpotato remain largely unexplored. This study analyzed the characteristics of salt-responsive ncRNAs in sweetpotato adventitious roots under salt stress via whole-transcriptome RNA sequencing. The results revealed that 3175 messenger RNAs (mRNAs), 458 microRNAs (miRNAs), 544 long-chain ncRNAs (lncRNAs), and 23 circular RNAs (circRNAs) were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that most differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) were enriched primarily in phenylpropanoid biosynthesis, starch and sucrose metabolism, the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, plant hormone signal transduction, the mRNA surveillance pathway, and ATP-binding cassette (ABC) transporters. Gene Ontology (GO) enrichment analysis revealed that the majority of DEmRNAs, their target DEmiRNAs, and differentially expressed lncRNAs (DElncRNAs) were associated with the cell wall, oxidation-reduction, the plasma membrane, protein phosphorylation, metabolic processes, transcription factor activity, and the regulation of transcription. Additionally, based on the competitive endogenous RNA (ceRNA) hypothesis, we predicted interactions among different RNAs and constructed a salt-responsive ceRNA network comprising 22 DEmiRNAs, 42 DEmRNAs, 27 DElncRNAs, and 10 differentially expressed circRNAs (DEcircRNAs). Some miRNAs, such as miR408, miR169, miR160, miR5139, miR5368, and miR6179, were central to the network, suggesting their crucial roles in the sweetpotato salt response. Our findings provide a foundation for further research into the potential functions of ncRNAs and offer new targets for salt stress resistance improvement through the manipulation of ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoyuan Wu
- Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Tao Xu
- Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
3
|
Sun HF, Wang XN, Li YN, Wang LL, Li YY, Ma LJ, Li XM. Long non-coding RNAs modulate glutathione metabolism gene expression and tolerance to Pb stress in root tissue of endophyte-infected rice seedling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117872. [PMID: 39923570 DOI: 10.1016/j.ecoenv.2025.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Endophyte can improve plant resistance to Pb stress, and long non-coding RNAs (lncRNAs) have been proved to play a vital role in response to environmental stress. However, there are few studies on the role of lncRNAs induced by endophyte in host plants under Pb stress. Therefore, we conducted high-throughput sequencing on root tissue of endophyte-infected and -uninfected rice seedlings under Pb stress, and analyzed the target genes of differentially expressed lncRNAs (DElncRNAs). The results showed that endophyte infection significantly increased plant height, above-ground fresh weight and dry weight, but significantly decreased root length and under-ground dry weight after 5 d of treatment. A total of 413 DElncRNAs (167 down-regulated and 246 up-regulated) were screened. Their target differentially expressed mRNAs (DEmRNAs) were significantly enriched in glutathione metabolism, plasma membrane and mineral elements transfer etc. DEmRNAs were most significantly enriched in glutathione metabolism, thereinto detected total glutathione, reduced and oxidized glutathione contents, glutathione S-transferase and glutathione reductase activities were significantly increased after 5 d of treatment. DElncRNAs and DEmRNAs were combined with miRNA database to construct ceRNA network. DEmRNAs in ceRNA network were mainly participated in carbohydrate metabolic process, peroxidase activity and phenylpropanoid biosynthesis. This study will help to understand the molecular mechanism elicited by endophytic infection within rice seedlings under Pb stress from the perspective of lncRNA.
Collapse
Affiliation(s)
- He-Fei Sun
- College of Life Science, Shenyang Normal University, No.253 Huanghe North Street, Shenyang 110034, China.
| | - Xin-Nan Wang
- College of Life Science, Shenyang Normal University, No.253 Huanghe North Street, Shenyang 110034, China.
| | - Ya-Nan Li
- College of Life Science, Shenyang Normal University, No.253 Huanghe North Street, Shenyang 110034, China.
| | - Lan-Lan Wang
- College of Life Science, Shenyang Normal University, No.253 Huanghe North Street, Shenyang 110034, China.
| | - Yue-Ying Li
- College of Life Science, Shenyang Normal University, No.253 Huanghe North Street, Shenyang 110034, China.
| | - Lian-Ju Ma
- College of Life Science, Shenyang Normal University, No.253 Huanghe North Street, Shenyang 110034, China.
| | - Xue-Mei Li
- College of Life Science, Shenyang Normal University, No.253 Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
4
|
Feng Z, Wang X, Luo Z, Liu A, Wen C, Ma Q, Liu W, Li X, Ma L, Li Y, Yang B, Wang L. Identification and expression analysis of lncRNAs in rice roots (Oryza sativa L.) under elevated CO 2 concentration and/or cadmium stress. Genomics 2025; 117:110980. [PMID: 39674421 DOI: 10.1016/j.ygeno.2024.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
The gradual rise of CO2 is one of the global climate changes, Cd stress is also a major abiotic stress factor that affects rice (Oryza sativa L.). The rice seedlings were treated under two CO2 concentrations and two CdCl2 concentrations for 7 days (treatments names: 400 ± 20 μmol mol-1 CO2 and 0 μmol L-1 CdCl2 concentrations, AC; 400 ± 20 μmol mol-1 CO2 and 150 μmol L-1 CdCl2 concentrations, Cd; 800 ± 20 μmol mol-1 CO2 and 0 μmol L-1 CdCl2 concentrations, EC; 800 ± 20 μmol mol-1 CO2 and 150 μmol L-1 CdCl2 concentrations, EC + Cd). The lncRNAs informations were analyzed and excavated using high-throughput sequencing, target genes annotation, and qRT-PCR analysis techniques so as to reveal the regulatory mechanism of lncRNAs in rice roots under high CO2 concentrations and/or Cd stress. The results show that: (1) 326 (AC vs Cd), 331 (AC vs EC), 343 (AC vs EC + Cd), 112 (Cd vs EC + Cd) DE-lncRNAs were identified. (2) MAPK signaling pathway-plant (relevant genes Os04g0534166, Os05g0399800 regulated by MSTRG.18576.11, MSTRG.20864.1) and diterpenoid biosynthesis (relevant genes Os12g0491800, Os02g0570400 regulated by MSTRG.8965.1, MSTRG.11509.1) were annotated in AC vs Cd; Under EC relative to AC, DE-lncRNAs were annotated significantly to the flavonoid biosynthesis (relevant genes Os10g0196100, Os10g0320100, Os11g0116300, Os03g0819600 regulated by MSTRG.4612.1, MSTRG.4668.1, MSTRG.6051.1, MSTRG.16669.1); Under composite treatments, relative to AC, DE-lncRNAs were mainly annotated in the plant hormone signal transduction pathway (relevant genes Os03g0180800, Os03g0180900, Os03g0181100 regulated by MSTRG.13776.1). Under combined treatment, elevated CO2 alleviates Cd stress damage by regulating phenylpropanoid biosynthesis through DE-lncRNAs (relevant genes Os09g0419200 regulated by MSTRG. 29,573.1).
Collapse
Affiliation(s)
- Ziyuan Feng
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Xiaoyu Wang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Zihan Luo
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Aihua Liu
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Caixia Wen
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Qi Ma
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Wenyong Liu
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Xuemei Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lianju Ma
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Yueying Li
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Bin Yang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China
| | - Lanlan Wang
- College of Life Science, Shenyang Normal University, No. 253 Huanghe North Street, Shenyang, Liaoning 110034, China.
| |
Collapse
|
5
|
Han M, Chen Z, Sun G, Feng Y, Guo Y, Bai S, Yan X. Nano-Fe 3O 4: Enhancing the tolerance of Elymus nutans to Cd stress through regulating programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124711. [PMID: 39128602 DOI: 10.1016/j.envpol.2024.124711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Cadmium (Cd) poses a significant threat to plant growth and the environment. Nano-Fe3O4 is effective in alleviating Cd stress in plants. Elymus nutans Griseb. is an important fodder crop on the Qinghai-Tibetan Plateau (QTP). However, the potential mechanism by which nano-Fe3O4 alleviates Cd stress in E. nutans is not well understood. E. nutans were subjected to single Cd, single nano-Fe3O4, and co-treatment with nano-Fe3O4 and Cd, and the effects on morphology, Cd uptake, antioxidant enzyme activity, reactive oxygen species (ROS) levels and programmed cell death (PCD) were studied to clarify the regulatory mechanism of nano-Fe3O4. The results showed that Cd stress significantly decreased the germination percentage and biomass of E. nutans. The photosynthetic pigment content decreased significantly under Cd stress. Cd stress also caused oxidative stress and lipid peroxidation, accumulation of excessive ROS, resulting in PCD, but the effect of nano-Fe3O4 was different. Seed germination, seedling growth, and physiological processes were analyzed to elucidate the regulatory role of nano-Fe3O4 nanoparticles in promoting photosynthesis, reducing Cd accumulation, scavenging ROS, and regulating PCD, to promote seed germination and seedling growth in E. nutans. This report provides a scientific basis for improving the tolerance of Elymus to Cd stress by using nano-Fe3O4.
Collapse
Affiliation(s)
- Mengli Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxia Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Feng X, Chen X, Meng Q, Song Z, Zeng J, He X, Wu F, Ma W, Liu W. Comparative Long Non-Coding Transcriptome Analysis of Three Contrasting Barley Varieties in Response to Aluminum Stress. Int J Mol Sci 2024; 25:9181. [PMID: 39273130 PMCID: PMC11395258 DOI: 10.3390/ijms25179181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Aluminum toxicity is a major abiotic stress on acidic soils, leading to restricted root growth and reduced plant yield. Long non-coding RNAs are crucial signaling molecules regulating the expression of downstream genes, particularly under abiotic stress conditions. However, the extent to which lncRNAs participate in the response to aluminum (Al) stress in barley remains largely unknown. Here, we conducted RNA sequencing of root samples under aluminum stress and compared the lncRNA transcriptomes of two Tibetan wild barley genotypes, XZ16 (Al-tolerant) and XZ61 (Al-sensitive), as well as the aluminum-tolerant cultivar Dayton. In total, 268 lncRNAs were identified as aluminum-responsive genes on the basis of their differential expression profiles under aluminum treatment. Through target gene prediction analysis, we identified 938 candidate lncRNA-messenger RNA (mRNA) pairs that function in a cis-acting manner. Subsequently, enrichment analysis showed that the genes targeted by aluminum-responsive lncRNAs were involved in diterpenoid biosynthesis, peroxisome function, and starch/sucrose metabolism. Further analysis of genotype differences in the transcriptome led to the identification of 15 aluminum-responsive lncRNAs specifically altered by aluminum stress in XZ16. The RNA sequencing data were further validated by RT-qPCR. The functional roles of lncRNA-mRNA interactions demonstrated that these lncRNAs are involved in the signal transduction of secondary messengers, and a disease resistance protein, such as RPP13-like protein 4, is probably involved in aluminum tolerance in XZ16. The current findings significantly contribute to our understanding of the regulatory roles of lncRNAs in aluminum tolerance and extend our knowledge of their importance in plant responses to aluminum stress.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoya Chen
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyan Song
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Wujun Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Fahad M, Tariq L, Muhammad S, Wu L. Underground communication: Long non-coding RNA signaling in the plant rhizosphere. PLANT COMMUNICATIONS 2024; 5:100927. [PMID: 38679911 PMCID: PMC11287177 DOI: 10.1016/j.xplc.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral gene-expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota, as well as nutrient acquisition and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface. A comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. Looking ahead, we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Yu S, Zhu J, Yin Y, Zhang X, Dai Y, Xing Y, Cheng X, Zhang A, Li C, Zhu Y, Ruan Y, Dong X, Fan J. Dynamic transcriptome profiling revealed a key gene ZmJMJ20 and pathways associated with cadmium stress in maize. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116352. [PMID: 38663195 DOI: 10.1016/j.ecoenv.2024.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Cadmium (Cd) pollution in soil poses a global concern due to its serious impacts on human health and ecological security. In plants, tremendous efforts have been made to identify some key genes and pathways in Cd stress responses. However, studies on the roles of epigenetic factors in response to Cd stress were still limited. In the study, we first gain insight into the gene expression dynamics for maize seedlings under 0 h, 12 h, and 72 h Cd stress. As a result, six distinct groups of genes were identified by hierarchical clustering and principal component analysis. The key pathways associated with 12 h Cd stress were protein modifications including protein ubiquitination, signal transduction by protein phosphorylation, and histone modification. Whereas, under 72 h stress, main pathways were involved in biological processes including phenylalanine metabolism, response to oxygen-containing compounds and metal ions. Then to be noted, one of the most highly expressed genes at 12 h under Cd treatment is annotated as histone demethylases (ZmJMJ20). The evolutionary tree analysis and domain analysis showed that ZmJMJ20 belonged to the JmjC-only subfamily of the Jumonji-C (JmjC) family, and ZmJMJ20 was conserved in rice and Arabidopsis. After 72 h of Cd treatment, the zmjmj20 mutant created by EMS treatment manifested less severe chlorosis/leaf yellowing symptoms compared with wild-type plants, and there was no significant difference in Fv/Fm and φPSII value before and after Cd treatment. Moreover, the expression levels of several photosynthesis-related down-regulated genes in EMS mutant plants were dramatically increased compared with those in wild-type plants at 12 h under Cd treatment. Our results suggested that ZmJMJ20 plays an important role in the Cd tolerance response pathway and will facilitate the development of cultivars with improved Cd stress tolerance.
Collapse
Affiliation(s)
- Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Jialun Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yanzhe Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yupeng Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Xipeng Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China.
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China.
| |
Collapse
|
9
|
Li H, Song Liu X, Sun D, Min Yang Z. A long non-coding RNA associated with H3K7me3 methylation negatively regulates OsZIP16 transcription under cadmium stress. Gene 2024; 901:148173. [PMID: 38242376 DOI: 10.1016/j.gene.2024.148173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Cadmium (Cd) is a toxic environmental pollutant, posing a high risk to crop production and human health. However, the genetic mechanisms for regulation of Cd accumulation in crops are poorly understood. In this study, we functionally identified a novel long non-coding RNA (lncRNA, TCONS_00502780) that repressed a locus encoding an uncharacterized metal transporter ZIP16 (ZRT/IRT-like Protein) in rice. LncRNA-OsZIP16 (L16) is resident in the antisense strand of OsZIP16. Both L16 and OsZIP16 were transcriptionally expressed during the life cycle, but under Cd stress the L16 transcription was repressed, whereas the OsZIP16 expression was upregulated. OsZIP16 is localized to the endoplasmic reticulum. Knocking out OsZIP16 by CRISPR-Cas9 (C16) resulted in Cd sensitivity, manifested by reduced plant growth and intense cellular damage with a slightly higher Cd translocation from roots to shoots, suggesting that OsZIP16 expression is required for rice growth and development under Cd stress. Conversely, OsZIP16 constitutive overexpression (OE16) lines displayed a growth phenotype compatible to the wide-type with lower Cd translocation ratio from roots to shoots. L16 knock-down lines by RNA interference (L16-R) showed a similar phenotype to the OE16 lines, while the L16 overexpression (L16-OE) lines were phenotypically similar to the C16 lines. The OsZIP16 transcription was upregulated in the L16-R lines but downregulated in the L16-OE lines. Using an antibody against the trimethylation of histone H3 lysine 27 (H3K27me3) followed by chromatin immunoprecipitation (ChIP), we found the reduced H3K27me3 methylation marks surrounding the OsZIP16 gene under Cd stress. Further examination of H3K27me3 in the L16-R lines revealed that the methylation levels were also significantly lower than those in WT. Taken together, these data suggest that the L16 could negatively regulate the OsZIP16 transcriptional expression through an epigenetic mechanism for rice adaption to Cd stress.
Collapse
Affiliation(s)
- He Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Song Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Di Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Qiu CW, Richmond M, Ma Y, Zhang S, Liu W, Feng X, Ahmed IM, Wu F. Melatonin enhances cadmium tolerance in rice via long non-coding RNA-mediated modulation of cell wall and photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133251. [PMID: 38141306 DOI: 10.1016/j.jhazmat.2023.133251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
In plants, melatonin (MLT) is a versatile signaling molecule involved in promoting plant development and mitigating the damage caused by heavy metal exposure. Long non-coding RNAs (lncRNAs) are essential components in the plant's response to various abiotic stress, functioning within the gene regulatory network. Here, a hydroponic experiment was performed to explore the involvement of lncRNAs in MLT-mediated amelioration of cadmium (Cd) toxicity in rice plants. The results demonstrated that applying 250 mg L-1 MLT in a solution containing 10 μM Cd leads to an effective reduction of 30.0% in shoot Cd concentration. Remarkably, the treatment resulted in a 21.2% improvement in potassium and calcium uptake, a 164.5% enhancement in net photosynthetic rate, and a 33.2% decrease in malondialdehyde accumulation, resulting increases in plant height, root length, and biomass accumulation. Moreover, a transcriptome analysis revealed 2510 differentially expressed transcripts, including the Cd transporters (-3.82-fold downregulated) and the Cd tolerance-associated genes (1.24-fold upregulated). Notably, regulatory network prediction uncovered 6 differentially expressed lncRNAs that act as competitive endogenous RNA or in RNA complex interactions. These key lncRNAs regulate the expression of target genes that are involved in pectin and cellulose metabolism, scavenging of reactive oxygen species, salicylic acid-mediated defense response, and biosynthesis of brassinosteroids, which ultimately modify the cell wall for Cd adsorption, safeguard photosynthesis, and control hormone signaling to reduce Cd toxicity. Our results unveiled a crucial lncRNA-mediated mechanism underlying MLT's role in Cd detoxification in rice plants, providing potential applications in agricultural practices and environmental remediation.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Marvin Richmond
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Imrul Mosaddek Ahmed
- Plant Biotechnology Laboratory, Center for Viticulture & Small Fruit Research, Florida A&M University, FL 32317, USA
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Jia Y, Zhao H, Niu Y, Wang Y. Long noncoding RNA from Betula platyphylla, BplncSIR1, confers salt tolerance by regulating BpNAC2 to mediate reactive oxygen species scavenging and stomatal movement. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:48-65. [PMID: 37697445 PMCID: PMC10754008 DOI: 10.1111/pbi.14164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) play an important role in abiotic stress tolerance. However, their function in conferring abiotic stress tolerance is still unclear. Herein, we characterized the function of a salt-responsive nuclear lncRNA (BplncSIR1) from Betula platyphylla (birch). Birch plants overexpressing and knocking out for BplncSIR1 were generated. BplncSIR1 was found to improve salt tolerance by inducing antioxidant activity and stomatal closure, and also accelerate plant growth. Chromatin isolation by RNA purification (ChIRP) combined with RNA sequencing indicated that BplncSIR1 binds to the promoter of BpNAC2 (encoding NAC domain-containing protein 2) to activate its expression. Plants overexpressing and knocking out for BpNAC2 were generated. Consistent with that of BplncSIR1, overexpression of BpNAC2 also accelerated plant growth and conferred salt tolerance. In addition, BpNAC2 binds to different cis-acting elements, such as G-box and 'CCAAT' sequences, to regulate the genes involved in salt tolerance, resulting in reduced ROS accumulation and decreased water loss rate by stomatal closure. Taken together, BplncSIR1 serves as the regulator of BpNAC2 to induce its expression in response to salt stress, and activated BpNAC2 accelerates plant growth and improves salt tolerance. Therefore, BplncSIR1 might be a candidate gene for molecular breeding to cultivate plants with both a high growth rate and improved salt tolerance.
Collapse
Affiliation(s)
- Yaqi Jia
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Huimin Zhao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yani Niu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
12
|
Zhu M, Liu Y, Bai H, Zhang W, Liu H, Qiu Z. Integrated physio-biochemical and RNA sequencing analysis revealed mechanisms of long non-coding RNA-mediated response to cadmium toxicity in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108028. [PMID: 37708712 DOI: 10.1016/j.plaphy.2023.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The yield and quality of wheat (Triticum aestivum L.) is seriously affected by soil cadmium (Cd), a hazardous material to plant and human health. Long non-coding RNAs (lncRNAs) of plants are shown actively involved in response to various biotic and abiotic stresses by mediating the gene regulatory networks. However, the functions of lncRNAs in wheat against Cd stress are still obscure. Using deep strand-specific RNA sequencing, 10,044 confident novel lncRNAs in wheat roots response to Cd stress were identified. It was found that 69 lncRNA-target pairs referred to cis-acting regulation and impacted the expressions of their neighboring genes involving in Cd transport and detoxification, photosynthesis, and antioxidant defense. These findings were positively corelated with the physio-biochemical results, i.e. Cd stress affected Cd accumulation, photosynthesis system and ROS in wheat. Overexpression of lncRNA37228 (targeted to a photosystem II protein D1 coding gene), resulted in enhancing Arabidopsis thaliana resistance against Cd stress. By genome-wide identification and characterization, the possible functions of photosystem II protein gene family in wheat under Cd condition were illustrated. Our findings provide novel knowledge into the molecular mechanisms of lncRNAs-regulated wheat tolerance to Cd toxicity and lay foundations for the further studies concerning lncRNAs in food safety production.
Collapse
Affiliation(s)
- Mo Zhu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; Xinxiang Key Laboratory of Plant Stress Biology, Xinxiang, 453000, PR China
| | - Yan Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Hongxia Bai
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Wanwan Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Zongbo Qiu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; Xinxiang Key Laboratory of Plant Stress Biology, Xinxiang, 453000, PR China.
| |
Collapse
|
13
|
Li L, Guo N, Liu T, Yang S, Hu X, Shi S, Li S. Genome-wide identification and characterization of long non-coding RNA in barley roots in response to Piriformospora indica colonization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111666. [PMID: 36858207 DOI: 10.1016/j.plantsci.2023.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Currently, there is very limited information about long noncoding RNAs (lncRNAs) found in barley. It remains unclear whether barley lncRNAs are responsive to Piriformospora indica (P. indica) colonization.We found that barley roots exhibited fast development and that large roots branched after P. indica colonization. Genome-wide high-throughput RNA-seq and bioinformatic analysis showed that 4356 and 5154 differentially expressed LncRNAs (DELs) were found in response to P. indica at 3 and 7 days after colonization (dai), respectively, and 2456 DELs were found at 7 dai compared to 3 dai. Based on the coexpression correlation of lncRNAmRNA, we found that 98.6% of lncRNAs were positively correlated with 3430 mRNAs at 3 dai and 7 dai. Further GO analysis showed that 30 lncRNAs might be involved in the regulation of gene transcription; 23 lncRNAs might participate in cell cycle regulation. Moreover, the metabolite analysis indicated that chlorophyll a, sucrose, protein, gibberellin, and auxin were in accordance with the results of the transcriptome, and the respective lncRNAs were positively correlated with these target RNAs. Gene silencing suggested that lncRNA TCONS_00262342 is probably a key regulator of GA3 synthesis pathway, which participates in P. indica and barley interactions. We concluded that acting as a molecular material basis and resource, lncRNAs respond to P. indica colonization by regulating metabolite content in barley and coordinate the complex regulatory process of higher life by constructing highly positive correlations with their target mRNAs.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Nannan Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tiance Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinting Hu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Si Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
14
|
Pradhan UK, Meher PK, Naha S, Rao AR, Gupta A. ASLncR: a novel computational tool for prediction of abiotic stress-responsive long non-coding RNAs in plants. Funct Integr Genomics 2023; 23:113. [PMID: 37000299 DOI: 10.1007/s10142-023-01040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
Abiotic stresses are detrimental to plant growth and development and have a major negative impact on crop yields. A growing body of evidence indicates that a large number of long non-coding RNAs (lncRNAs) are key to many abiotic stress responses. Thus, identifying abiotic stress-responsive lncRNAs is essential in crop breeding programs in order to develop crop cultivars resistant to abiotic stresses. In this study, we have developed the first machine learning-based computational model for predicting abiotic stress-responsive lncRNAs. The lncRNA sequences which were responsive and non-responsive to abiotic stresses served as the two classes of the dataset for binary classification using the machine learning algorithms. The training dataset was created using 263 stress-responsive and 263 non-stress-responsive sequences, whereas the independent test set consists of 101 sequences from both classes. As the machine learning model can adopt only the numeric data, the Kmer features ranging from sizes 1 to 6 were utilized to represent lncRNAs in numeric form. To select important features, four different feature selection strategies were utilized. Among the seven learning algorithms, the support vector machine (SVM) achieved the highest cross-validation accuracy with the selected feature sets. The observed 5-fold cross-validation accuracy, AU-ROC, and AU-PRC were found to be 68.84, 72.78, and 75.86%, respectively. Furthermore, the robustness of the developed model (SVM with the selected feature) was evaluated using an independent test dataset, where the overall accuracy, AU-ROC, and AU-PRC were found to be 76.23, 87.71, and 88.49%, respectively. The developed computational approach was also implemented in an online prediction tool ASLncR accessible at https://iasri-sg.icar.gov.in/aslncr/ . The proposed computational model and the developed prediction tool are believed to supplement the existing effort for the identification of abiotic stress-responsive lncRNAs in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India.
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | | | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| |
Collapse
|
15
|
Long Non-Coding RNAs of Plants in Response to Abiotic Stresses and Their Regulating Roles in Promoting Environmental Adaption. Cells 2023; 12:cells12050729. [PMID: 36899864 PMCID: PMC10001313 DOI: 10.3390/cells12050729] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Abiotic stresses triggered by climate change and human activity cause substantial agricultural and environmental problems which hamper plant growth. Plants have evolved sophisticated mechanisms in response to abiotic stresses, such as stress perception, epigenetic modification, and regulation of transcription and translation. Over the past decade, a large body of literature has revealed the various regulatory roles of long non-coding RNAs (lncRNAs) in the plant response to abiotic stresses and their irreplaceable functions in environmental adaptation. LncRNAs are recognized as a class of ncRNAs that are longer than 200 nucleotides, influencing a variety of biological processes. In this review, we mainly focused on the recent progress of plant lncRNAs, outlining their features, evolution, and functions of plant lncRNAs in response to drought, low or high temperature, salt, and heavy metal stress. The approaches to characterize the function of lncRNAs and the mechanisms of how they regulate plant responses to abiotic stresses were further reviewed. Moreover, we discuss the accumulating discoveries regarding the biological functions of lncRNAs on plant stress memory as well. The present review provides updated information and directions for us to characterize the potential functions of lncRNAs in abiotic stresses in the future.
Collapse
|
16
|
Transcriptional Regulatory Network of Plant Cadmium Stress Response. Int J Mol Sci 2023; 24:ijms24054378. [PMID: 36901809 PMCID: PMC10001906 DOI: 10.3390/ijms24054378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity to plants. Plants have acquired specialized mechanisms to sense, transport, and detoxify Cd. Recent studies have identified many transporters involved in Cd uptake, transport, and detoxification. However, the complex transcriptional regulatory networks involved in Cd response remain to be elucidated. Here, we provide an overview of current knowledge regarding transcriptional regulatory networks and post-translational regulation of the transcription factors involved in Cd response. An increasing number of reports indicate that epigenetic regulation and long non-coding and small RNAs are important in Cd-induced transcriptional responses. Several kinases play important roles in Cd signaling that activate transcriptional cascades. We also discuss the perspectives to reduce grain Cd content and improve crop tolerance to Cd stress, which provides a theoretical reference for food safety and the future research of plant varieties with low Cd accumulation.
Collapse
|
17
|
Ding Y, Yang Q, Waheed A, Zhao M, Liu X, Kahar G, Haxim Y, Wen X, Zhang D. Genome-wide characterization and functional identification of MYB genes in Malus sieversii infected by Valsa mali. FRONTIERS IN PLANT SCIENCE 2023; 14:1112681. [PMID: 37089647 PMCID: PMC10113540 DOI: 10.3389/fpls.2023.1112681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Among the most important transcription factors in plants, the v-myb avian myeloblastosis viral oncogene homolog (MYB) regulates the expression network of response genes under stresses such as fungal infection. In China, the canker disease Valsa mali threatens the survival of Malus sieversii, an ancestor of cultivated apples. Using the M. sieversii genome, we identified 457 MsMYB and 128 R2R3-MsMYB genes that were randomly distributed across 17 chromosomes. Based on protein sequence and structure, the R2R3-MsMYB genes were phylogenetically divided into 29 categories, and 26 conserved motifs were identified. We further predicted cis-elements in the 2000-kb promoter region of R2R3-MsMYBs based on the genome. Transcriptome analysis of M. sieversii under V. mali infection showed that 27 R2R3-MsMYBs were significantly differentially expressed, indicating their key role in the response to V. mali infection. Using transient transformation, MsMYB14, MsMYB24, MsMYB39, MsMYB78, and MsMYB108, which were strongly induced by V. mali infection, were functionally identified. Among the five MsMYBs, MsMYB14 and MsMYB78 were both important in enhancing resistance to diseases, whereas MsMYB24 inhibited resistance. Based on the results of this study, we gained a better understanding of the MsMYB transcription factor family and laid the foundation for a future research program on disease prevention strategies in M. sieversii.
Collapse
Affiliation(s)
- Yu Ding
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qihang Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Mingqi Zhao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| |
Collapse
|
18
|
Liu G, Liu F, Wang Y, Liu X. A novel long noncoding RNA CIL1 enhances cold stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111370. [PMID: 35788028 DOI: 10.1016/j.plantsci.2022.111370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
With the intensification of global warming, extreme weather events have occurred more frequently, among which cold stress has become one of the major environmental factors that restrict global crop yield and production. Multiple long noncoding RNAs (lncRNAs) have been predicted or recognized in the plant response to cold stress, however, the molecular biological functions of most of these RNAs are still poorly understood. Here, we identified a novel lncRNA, COLD INDUCED lncRNA 1 (CIL1), as a positive regulator of the plant response to cold stress in Arabidopsis. CIL1 was significantly induced when the plant was exposed to cold stress. Moreover, knockdown mutants showed more sensitivity to cold stress than the wild type did, accompanied by an increased content of endogenous ROS (reactive oxygen species) and reduced osmoregulatory substances. Genome-wide transcriptome analysis indicated that 256 genes were downregulated and 34 genes were upregulated in cil1 mutants under cold stress, which were mainly involved in hormone signal transduction, ROS homeostasis and glucose metabolism. Our study implies that CIL1 has a positive effect on the plant response to cold stress by regulating the expression of multiple stress-related genes during the seedling stage.
Collapse
Affiliation(s)
- Guangchao Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Fuxia Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yue Wang
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
19
|
Chen P, Song Y, Liu X, Xiao L, Bu C, Liu P, Zhao L, Ingvarsson PK, Wu HX, El-Kassaby YA, Zhang D. LncRNA PMAT-PtoMYB46 module represses PtoMATE and PtoARF2 promoting Pb 2+ uptake and plant growth in poplar. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128769. [PMID: 35364535 DOI: 10.1016/j.jhazmat.2022.128769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Lead (Pb2+) is one of the most toxic heavy-metal contaminants. Fast-growing woody plants with substantial biomass are ideal for bioremediation. However, the transcriptional regulation of Pb2+ uptake in woody plants remains unclear. Here, we identified 226 Pb2+-induced, differentially expressed long non-coding RNAs (DELs) in Populus tomentosa. Functional annotation revealed that these DELs mainly regulate carbon metabolism, biosynthesis of secondary metabolites, energy metabolism, and signal transduction through their potential target genes. Association and epistasis analysis showed that the lncRNA PMAT (Pb2+-induced multidrug and toxic compound extrusion (MATE) antisense lncRNA) interacts epistatically with PtoMYB46 to regulate leaf dry weight, photosynthesis rate, and transketolase activity. Genetic transformation and molecular assays showed that PtoMYB46 reduces the expression of PtoMATE directly or indirectly through PMAT, thereby reducing the secretion of citric acid (CA) and ultimately promoting Pb2+ uptake. Meanwhile, PtoMYB46 targets auxin response factor 2 (ARF2) and reduces its expression, thus positively regulating plant growth. We concluded that the PMAT-PtoMYB46-PtoMATE-PtoARF2 regulatory module control Pb2+ tolerance, uptake, and plant growth. This study demonstrates the involvement of lncRNAs in response to Pb2+ in poplar, yielding new insight into the potential for developing genetically improved woody plant varieties for phytoremediating lead-contaminated soils.
Collapse
Affiliation(s)
- Panfei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, PR China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Xin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Chenhao Bu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Peng Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Lei Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China; School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, PR China.
| |
Collapse
|
20
|
The Intersection of Non-Coding RNAs Contributes to Forest Trees' Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23126365. [PMID: 35742808 PMCID: PMC9223653 DOI: 10.3390/ijms23126365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play essential roles in plants by modulating the expression of genes at the transcriptional or post-transcriptional level. In recent years, ncRNAs have been recognized as crucial regulators for growth and development in forest trees, and ncRNAs that respond to various abiotic stresses are now under intense study. In this review, we summarized recent advances in the understanding of abiotic stress-responsive microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in forest trees. Furthermore, we analyzed the intersection of miRNAs, and epigenetic modified ncRNAs of forest trees in response to abiotic stress. In particular, the abiotic stress-related lncRNA/circRNA-miRNA-mRNA regulatory network of forest trees was explored.
Collapse
|
21
|
Liu X, Luo M, Li M, Wei J. Transcriptomic Analysis Reveals LncRNAs Associated with Flowering of Angelica sinensis during Vernalization. Curr Issues Mol Biol 2022; 44:1867-1888. [PMID: 35678657 PMCID: PMC9164074 DOI: 10.3390/cimb44050128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
Angelica sinensis is a “low-temperature and long-day” perennial plant that produces bioactive compounds such as phthalides, organic acids, and polysaccharides for various types of clinical agents, including those with cardio-cerebrovascular, hepatoprotective, and immunomodulatory effects. To date, the regulatory mechanism of flowering under the photoperiod has been revealed, while the regulatory network of flowering genes during vernalization, especially in the role of lncRNAs, has yet to be identified. Here, lncRNAs associated with flowering were identified based on the full-length transcriptomic analysis of A. sinensis at vernalization and freezing temperatures, and the coexpressed mRNAs of lncRNAs were validated by qRT-PCR. We obtained a total of 2327 lncRNAs after assessing the protein-coding potential of coexpressed mRNAs, with 607 lncRNAs aligned against the TAIR database of model plant Arabidopsis, 345 lncRNAs identified, and 272 lncRNAs characterized on the SwissProt database. Based on the biological functions of coexpressed mRNAs, the 272 lncRNAs were divided into six categories: (1) chromatin, DNA/RNA and protein modification; (2) flowering; (3) stress response; (4) metabolism; (5) bio-signaling; and (6) energy and transport. The differential expression levels of representatively coexpressed mRNAs were almost consistent with the flowering of A. sinensis. It can be concluded that the flowering of A. sinensis is positively or negatively regulated by lncRNAs, which provides new insights into the regulation mechanism of the flowering of A. sinensis.
Collapse
Affiliation(s)
- Xiaoxia Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mimi Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (X.L.); (M.L.)
- Correspondence: (M.L.); (J.W.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| |
Collapse
|
22
|
Abramson BW, Novotny M, Hartwick NT, Colt K, Aevermann BD, Scheuermann RH, Michael TP. The genome and preliminary single-nuclei transcriptome of Lemna minuta reveals mechanisms of invasiveness. PLANT PHYSIOLOGY 2022; 188:879-897. [PMID: 34893913 PMCID: PMC8825320 DOI: 10.1093/plphys/kiab564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/16/2021] [Indexed: 05/13/2023]
Abstract
The ability to trace every cell in some model organisms has led to the fundamental understanding of development and cellular function. However, in plants the complexity of cell number, organ size, and developmental time makes this a challenge even in the diminutive model plant Arabidopsis (Arabidopsis thaliana). Duckweed, basal nongrass aquatic monocots, provide an opportunity to follow every cell of an entire plant due to their small size, reduced body plan, and fast clonal growth habit. Here we present a chromosome-resolved genome for the highly invasive Lesser Duckweed (Lemna minuta) and generate a preliminary cell atlas leveraging low cell coverage single-nuclei sequencing. We resolved the 360 megabase genome into 21 chromosomes, revealing a core nonredundant gene set with only the ancient tau whole-genome duplication shared with all monocots, and paralog expansion as a result of tandem duplications related to phytoremediation. Leveraging SMARTseq2 single-nuclei sequencing, which provided higher gene coverage yet lower cell count, we profiled 269 nuclei covering 36.9% (8,457) of the L. minuta transcriptome. Since molecular validation was not possible in this nonmodel plant, we leveraged gene orthology with model organism single-cell expression datasets, gene ontology, and cell trajectory analysis to define putative cell types. We found that the tissue that we computationally defined as mesophyll expressed high levels of elemental transport genes consistent with this tissue playing a role in L. minuta wastewater detoxification. The L. minuta genome and preliminary cell map provide a paradigm to decipher developmental genes and pathways for an entire plant.
Collapse
Affiliation(s)
- Bradley W Abramson
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Mark Novotny
- Department of Informatics, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Nolan T Hartwick
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Kelly Colt
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Brian D Aevermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, California 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
23
|
Liu P, Zhang Y, Zou C, Yang C, Pan G, Ma L, Shen Y. Integrated analysis of long non-coding RNAs and mRNAs reveals the regulatory network of maize seedling root responding to salt stress. BMC Genomics 2022; 23:50. [PMID: 35026983 PMCID: PMC8756644 DOI: 10.1186/s12864-021-08286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play important roles in response to abiotic stresses in plants, by acting as cis- or trans-acting regulators of protein-coding genes. As a widely cultivated crop worldwide, maize is sensitive to salt stress particularly at the seedling stage. However, it is unclear how the expressions of protein-coding genes are affected by non-coding RNAs in maize responding to salt tolerance. Results The whole transcriptome sequencing was employed to investigate the differential lncRNAs and target transcripts responding to salt stress between two maize inbred lines with contrasting salt tolerance. We developed a flexible, user-friendly, and modular RNA analysis workflow, which facilitated the identification of lncRNAs and novel mRNAs from whole transcriptome data. Using the workflow, 12,817 lncRNAs and 8,320 novel mRNAs in maize seedling roots were identified and characterized. A total of 742 lncRNAs and 7,835 mRNAs were identified as salt stress-responsive transcripts. Moreover, we obtained 41 cis- and 81 trans-target mRNA for 88 of the lncRNAs. Among these target transcripts, 11 belonged to 7 transcription factor (TF) families including bHLH, C2H2, Hap3/NF-YB, HAS, MYB, WD40, and WRKY. The above 8,577 salt stress-responsive transcripts were further classified into 28 modules by weighted gene co-expression network analysis. In the salt-tolerant module, we constructed an interaction network containing 79 nodes and 3081 edges, which included 5 lncRNAs, 18 TFs and 56 functional transcripts (FTs). As a trans-acting regulator, the lncRNA MSTRG.8888.1 affected the expressions of some salt tolerance-relative FTs, including protein-serine/threonine phosphatase 2C and galactinol synthase 1, by regulating the expression of the bHLH TF. Conclusions The contrasting genetic backgrounds of the two inbred lines generated considerable variations in the expression abundance of lncRNAs and protein-coding transcripts. In the co-expression networks responding to salt stress, some TFs were targeted by the lncRNAs, which further regulated the salt tolerance-related functional transcripts. We constructed a regulatory pathway of maize seedlings to salt stress, which was mediated by the hub lncRNA MSTRG.8888.1 and participated by the bHLH TF and its downstream target transcripts. Future work will be focused on the functional revelation of the regulatory pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08286-7.
Collapse
|
24
|
Patturaj M, Munusamy A, Kannan N, Ramasamy Y. Biologia Futura: progress and future perspectives of long non-coding RNAs in forest trees. Biol Futur 2021; 73:43-53. [PMID: 34843103 DOI: 10.1007/s42977-021-00108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Forest trees are affected by climate change, anthropogenic pressure, as well as abiotic and biotic stresses. Conventional tree breeding has so far been limited to enhance overall productivity, and our understanding of the genetic basis of quantitative traits is still inadequate. Quantum leaps in next-generation sequencing technologies and bioinformatics have permitted the exploration and identification of various non-coding regions of the genome other than protein coding genes. These genomic regions produce various types of non-coding RNAs and regulate myriads of biological functions at epigenetic, transcriptional and translational levels. Recently, long non-coding RNAs (lncRNAs) which act as molecular switch have been identified to be pivotal molecules in forest trees. This review focuses on progress made in regulatory mechanisms in various developmental phases like wood formation, adventitious rooting and flowering and stress responses. It was predicted that complex regulatory interactions among lncRNA, miRNA and gene exist. LncRNAs can function as a sponge for miRNAs, reducing the suppressive effect of miRNAs on target mRNAs and perhaps adding a new layer of regulatory interactions among non-coding RNA classes in trees. Furthermore, network analysis revealed the interactions of lncRNA and genes during the expression of several important genes. The insights generated about lncRNAs in forest trees would enable improvement of economically important traits including the devastating abiotic and biotic stresses. In addition, solid understanding on the wide range of regulatory functions of lncRNAs on traits influencing biomass productivity and adaptation would aid the applications of biotechnology in genetic improvement of forest trees.
Collapse
Affiliation(s)
- Maheswari Patturaj
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Aiswarya Munusamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Nithishkumar Kannan
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Yasodha Ramasamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India.
| |
Collapse
|
25
|
Huang SF, Peng XF, Jiang L, Hu CY, Ye WC. LncRNAs as Therapeutic Targets and Potential Biomarkers for Lipid-Related Diseases. Front Pharmacol 2021; 12:729745. [PMID: 34421622 PMCID: PMC8371450 DOI: 10.3389/fphar.2021.729745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022] Open
Abstract
Lipid metabolism is an essential biological process involved in nutrient adjustment, hormone regulation, and lipid homeostasis. An irregular lifestyle and long-term nutrient overload can cause lipid-related diseases, including atherosclerosis, myocardial infarction (MI), obesity, and fatty liver diseases. Thus, novel tools for efficient diagnosis and treatment of dysfunctional lipid metabolism are urgently required. Furthermore, it is known that lncRNAs based regulation like sponging microRNAs (miRNAs) or serving as a reservoir for microRNAs play an essential role in the progression of lipid-related diseases. Accordingly, a better understanding of the regulatory roles of lncRNAs in lipid-related diseases would provide the basis for identifying potential biomarkers and therapeutic targets for lipid-related diseases. This review highlighted the latest advances on the potential biomarkers of lncRNAs in lipid-related diseases and summarised current knowledge on dysregulated lncRNAs and their potential molecular mechanisms. We have also provided novel insights into the underlying mechanisms of lncRNAs which might serve as potential biomarkers and therapeutic targets for lipid-related diseases. The information presented here may be useful for designing future studies and advancing investigations of lncRNAs as biomarkers for diagnosis, prognosis, and therapy of lipid-related diseases.
Collapse
Affiliation(s)
- Shi-Feng Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xiao-Fei Peng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lianggui Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Wen-Chu Ye
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|