1
|
Aggarwal B, Karlowski WM, Nuc P, Jarmolowski A, Szweykowska-Kulinska Z, Pietrykowska H. MiRNAs differentially expressed in vegetative and reproductive organs of Marchantia polymorpha - insights into their expression pattern, gene structures and function. RNA Biol 2024; 21:1-12. [PMID: 38303117 PMCID: PMC10841014 DOI: 10.1080/15476286.2024.2303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.
Collapse
Affiliation(s)
- Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wojciech Maciej Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Swida-Barteczka A, Pacak A, Kruszka K, Nuc P, Karlowski WM, Jarmolowski A, Szweykowska-Kulinska Z. MicroRNA172b-5p/trehalose-6-phosphate synthase module stimulates trehalose synthesis and microRNA172b-3p/AP2-like module accelerates flowering in barley upon drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1124785. [PMID: 36950348 PMCID: PMC10025483 DOI: 10.3389/fpls.2023.1124785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) are major regulators of gene expression during plant development under normal and stress conditions. In this study, we analyzed the expression of 150 conserved miRNAs during drought stress applied to barley ready to flower. The dynamics of miRNAs expression was also observed after rewatering. Target messenger RNA (mRNAs) were experimentally identified for all but two analyzed miRNAs, and 41 of the targets were not reported before. Drought stress applied to barley induced accelerated flowering coordinated by a pair of two differently expressed miRNAs originating from a single precursor: hvu-miR172b-3p and hvu-miR172b-5p. Increased expression of miRNA172b-3p during drought leads to the downregulation of four APETALA2(AP2)-like genes by their mRNA cleavage. In parallel, the downregulation of the miRNA172b-5p level results in an increased level of a newly identified target, trehalose-6-phosphate synthase, a key enzyme in the trehalose biosynthesis pathway. Therefore, drought-treated plants have higher trehalose content, a known osmoprotectant, whose level is rapidly dropping after watering. In addition, trehalose-6-phosphate, an intermediate of the trehalose synthesis pathway, is known to induce flowering. The hvu-miRNA172b-5p/trehalose-6-phosphate synthase and hvu-miRNA172b-3p/AP2-like create a module leading to osmoprotection and accelerated flowering induction during drought.
Collapse
Affiliation(s)
- Aleksandra Swida-Barteczka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Jamla M, Joshi S, Patil S, Tripathi BN, Kumar V. MicroRNAs modulating nutrient homeostasis: a sustainable approach for developing biofortified crops. PROTOPLASMA 2023; 260:5-19. [PMID: 35657503 DOI: 10.1007/s00709-022-01775-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
During their lifespan, sessile plants have to cope with bioavailability of the suboptimal nutrient concentration and have to constantly sense/evolve the connecting web of signal cascades for efficient nutrient uptake, storage, and translocation for proper growth and metabolism. However, environmental fluctuations and escalating anthropogenic activities are making it a formidable challenge for plants. This is adding to (micro)nutrient-deficient crops and nutritional insecurity. Biofortification is emerging as a sustainable and efficacious approach which can be utilized to combat the micronutrient malnutrition. A biofortified crop has an enriched level of desired nutrients developed using conventional breeding, agronomic practices, or advanced biotechnological tools. Nutrient homeostasis gets hampered under nutrient stress, which involves disturbance in short-distance and long-distance cell-cell/cell-organ communications involving multiple cellular and molecular components. Advanced sequencing platforms coupled with bioinformatics pipelines and databases have suggested the potential roles of tiny signaling molecules and post-transcriptional regulators, the microRNAs (miRNAs) in key plant phenomena including nutrient homeostasis. miRNAs are seen as emerging targets for biotechnology-based biofortification programs. Thus, understanding the mechanistic insights and regulatory role of miRNAs could open new windows for exploring them in developing nutrient-efficient biofortified crops. This review discusses significance and roles of miRNAs in plant nutrition and nutrient homeostasis and how they play key roles in plant responses to nutrient imbalances/deficiencies/toxicities covering major nutrients-nitrogen (N), phosphorus (P), sulfur (S), magnesium (Mg), iron (Fe), and zinc (Zn). A perspective view has been given on developing miRNA-engineered biofortified crops with recent success stories. Current challenges and future strategies have also been discussed.
Collapse
Affiliation(s)
- Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484887, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
| |
Collapse
|
4
|
What Do We Know about Barley miRNAs? Int J Mol Sci 2022; 23:ijms232314755. [PMID: 36499082 PMCID: PMC9740008 DOI: 10.3390/ijms232314755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Plant miRNAs are powerful regulators of gene expression at the post-transcriptional level, which was repeatedly proved in several model plant species. miRNAs are considered to be key regulators of many developmental, homeostatic, and immune processes in plants. However, our understanding of plant miRNAs is still limited, despite the fact that an increasing number of studies have appeared. This systematic review aims to summarize our current knowledge about miRNAs in spring barley (Hordeum vulgare), which is an important agronomical crop worldwide and serves as a common monocot model for studying abiotic stress responses as well. This can help us to understand the connection between plant miRNAs and (not only) abiotic stresses in general. In the end, some future perspectives and open questions are summarized.
Collapse
|
5
|
Lu Y, Zhang J, Han Z, Han Z, Li S, Zhang J, Ma H, Han Y. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. BMC PLANT BIOLOGY 2022; 22:478. [PMID: 36207676 PMCID: PMC9547441 DOI: 10.1186/s12870-022-03866-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A reasonable supply of nitrogen (N) fertilizer is essential for obtaining high-quality, high-level, and stable potato yields, and an improvement in the N utilization efficiency can effectively reduce N fertilizer use. It is important to use accurate, straightforward, and efficient transgenic breeding techniques for the identification of genes that can improve nitrogen use efficiency, thus enabling us to achieve the ultimate goal of breeding N-efficient potato varieties. In recent years, some of the mechanisms of miRNAs have been elucidated via the analysis of the correlation between the expression levels of potato miRNA target genes and regulated genes under conditions of stress, but the role of miRNAs in the inhibition/expression of key genes regulating N metabolism under N stress is still unclear. Our study aimed to identify the role played by specific enzymes and miRNAs in the responses of plants to N stress. RESULTS The roots and leaves of the N-efficient potato variety, Yanshu4 ("Y"), and N-inefficient potato variety, Atlantic ("D"), were collected at the seedling and budding stages after they were exposed to different N fertilizer treatments. The miRNAs expressed differentially under the two types of N stress and their corresponding target genes were first predicted using miRNA and degradome analysis. Then, quantitative polymerase chain reaction (qRT-PCR) was performed to verify the expression of differential miRNAs that were closely related to N metabolism. Finally, the shearing relationship between stu-miR396-5p and its target gene StNiR was determined by analyzing luciferase activity levels. The results showed that NiR activity increased significantly with an increase in the applied N levels from the seedling stage to the budding stage, and NiR responded significantly to different N treatments. miRNA sequencing enabled us to predict 48 families with conserved miRNAs that were mainly involved in N metabolism, carbon metabolism, and amino acid biosynthesis. The differences in the expression of the following miRNAs were identified via screening (high expression levels and P < 0.05): stu-miR396-5p, stu-miR408b-3p_R-1, stu-miR3627-3p, stu-miR482a-3p, stu-miR8036-3p, stu-miR482a-5p, stu-miR827-5p, stu-miR156a_L-1, stu-miR827-3p, stu-miR172b-5p, stu-miR6022-p3_7, stu-miR398a-5p, and stu-miR166c-5p_L-3. Degradome analysis showed that most miRNAs had many-to-many relationships with target genes. The main target genes involved in N metabolism were NiR, NiR1, NRT2.5, and NRT2.7. qRT-PCR analysis showed that there were significant differences in the expression levels of stu-miR396-5p, stu-miR8036-3p, and stu-miR482a-3p in the leaves and roots of the Yanshu4 and Atlantic varieties at the seedling and budding stages under conditions that involved no N and excessive N application; the expression of these miRNAs was induced in response to N stress. The correlation between the differential expression of stu-miR396-5p and its corresponding target gene NiR was further verified by determining the luciferase activity level and was found to be strongly negative. CONCLUSION The activity of NiR was significantly positively correlated with N application from the seedling to the budding stage. Differential miRNAs and target genes showed a many-to-many relationship with each other. The expression of stu-miR396-5p, stu-miR482a-3p, and stu-miR8036-3p in the roots and leaves of the Yanshu4 and Atlantic varieties at the seedling and budding stages was notably different under two types of N stress. Under two types of N stress, stu-miR396-5p was down-regulated in Yanshu4 in the seedling-stage and shoot-stage roots, and up-regulated in seedling-stage roots and shoot-stage leaves; stu-miR482a-3p was up-regulated in the seedling and shoot stages. The expression of stu-miR8036-3p was up-regulated in the leaves and roots at the seedling and budding stages, and down-regulated in roots under both types of N stress. The gene expressing the key enzyme involved in N metabolism, StNiR, and the stu-miR396-5p luciferase assay reporter gene had a strong regulatory relationship with each other. This study provides candidate miRNAs related to nitrogen metabolism and highlights that differential miRNAs play a key role in nitrogen stress in potato, providing insights for future research on miRNAs and their target genes in nitrogen metabolic pathways and breeding nitrogen-efficient potatoes.
Collapse
Affiliation(s)
- Yue Lu
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Jingying Zhang
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
- College of Resources and Environment, Jilin Agricultural University, Changchun City, 130118, P.R. China
| | - Zhijun Han
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Zhongcai Han
- Jilin Provincial Research Institute of Vegetables and Flowers, Changchun City, 130052, People's Republic of China
| | - Shuang Li
- Teaching and Research Base Management Office, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Jiayue Zhang
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Haoran Ma
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Yuzhu Han
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China.
| |
Collapse
|
6
|
Smoczynska A, Pacak A, Grabowska A, Bielewicz D, Zadworny M, Singh K, Dolata J, Bajczyk M, Nuc P, Kesy J, Wozniak M, Ratajczak I, Harwood W, Karlowski WM, Jarmolowski A, Szweykowska-Kulinska Z. Excess nitrogen responsive HvMADS27 transcription factor controls barley root architecture by regulating abscisic acid level. FRONTIERS IN PLANT SCIENCE 2022; 13:950796. [PMID: 36172555 PMCID: PMC9511987 DOI: 10.3389/fpls.2022.950796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 06/01/2023]
Abstract
Nitrogen (N) is an important element for plant growth and development. Although several studies have examined plants' response to N deficiency, studies on plants' response to excess N, which is common in fertilizer-based agrosystems, are limited. Therefore, the aim of this study was to examine the response of barley to excess N conditions, specifically the root response. Additionally, genomic mechanism of excess N response in barley was elucidated using transcriptomic technologies. The results of the study showed that barley MADS27 transcription factor was mainly expressed in the roots and its gene contained N-responsive cis-regulatory elements in the promoter region. Additionally, there was a significant decrease in HvMADS27 expression under excess N condition; however, its expression was not significantly affected under low N condition. Phenotypic analysis of the root system of HvMADS27 knockdown and overexpressing barley plants revealed that HvMADS27 regulates barley root architecture under excess N stress. Further analysis of wild-type (WT) and transgenic barley plants (hvmads27 kd and hvmads27 c-Myc OE) revealed that HvMADS27 regulates the expression of HvBG1 β-glucosidase, which in turn regulates abscisic acid (ABA) level in roots. Overall, the findings of this study showed that HvMADS27 expression is downregulated in barley roots under excess N stress, which induces HvBG1 expression, leading to the release of ABA from ABA-glucose conjugate, and consequent shortening of the roots.
Collapse
Affiliation(s)
- Aleksandra Smoczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Aleksandra Grabowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jacek Kesy
- Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Wozniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Wendy Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norfolk, United Kingdom
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
7
|
Fukuda M, Fujiwara T, Nishida S. Roles of Non-Coding RNAs in Response to Nitrogen Availability in Plants. Int J Mol Sci 2020; 21:ijms21228508. [PMID: 33198163 PMCID: PMC7696010 DOI: 10.3390/ijms21228508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/06/2023] Open
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development; therefore, N deficiency is a major limiting factor in crop production. Plants have evolved mechanisms to cope with N deficiency, and the role of protein-coding genes in these mechanisms has been well studied. In the last decades, regulatory non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long ncRNAs (lncRNAs), have emerged as important regulators of gene expression in diverse biological processes. Recent advances in technologies for transcriptome analysis have enabled identification of N-responsive ncRNAs on a genome-wide scale. Characterization of these ncRNAs is expected to improve our understanding of the gene regulatory mechanisms of N response. In this review, we highlight recent progress in identification and characterization of N-responsive ncRNAs in Arabidopsis thaliana and several other plant species including maize, rice, and Populus.
Collapse
Affiliation(s)
- Makiha Fukuda
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA;
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Sho Nishida
- Department of Bioresource Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
- Correspondence: ; Tel.: +81-952-28-8720
| |
Collapse
|