1
|
Kumari R, Gupta D, Regon P, Gábor K, Panda SK. Genome-Wide Analysis for TLDc domain-containing genes in Oryza sativa. Comput Biol Chem 2025; 117:108428. [PMID: 40163961 DOI: 10.1016/j.compbiolchem.2025.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
OXidation Resistance (OXR) is a family of eukaryotic proteins characterized by the presence of the highly conserved TLDc (TBC (Tre2/Bub2/Cdc16), LysM (lysine motif), domain catalytic) domain at the C-terminal half which plays a crucial role in cellular defense mechanisms, particularly in response to oxidative stress. TLDc (TBC/LysM domain catalytic) domain-containing proteins are essential regulators of oxidative stress responses in plants, a key juncture for various stress signaling pathways. This study identified six putative TLDc genes in the rice (Oryza sativa L.) genome through a comprehensive in silico analysis. These genes were characterized by their conserved TLDc domain, with gene expression analysis via qRT-PCR confirming their significant upregulation under drought and salt stress conditions. These findings suggest a potential role for TLDc genes in enhancing stress tolerance through oxidative stress regulation, making them promising miRNA targets for modulating stress responses. Comparative phylogenetic analysis reveals that rice TLDc genes share close evolutionary bonds with Wheat, Maize, and Arabidopsis thaliana, suggesting a conserved role across species. Especially, the study finds that gene duplications contribute to the diversity of TLDc genes, and examines how these duplications may influence protein subcellular localization, primarily in the plasma membrane, nucleus, and chloroplast, which are crucial for stress signaling pathways. This work builds on existing research by expanding our understanding of TLDc genes in Oryza sativa, addressing gaps in the functional characterization of the gene family in stress responses, and offering valuable insights for further exploration of their roles in plant resilience.
Collapse
Affiliation(s)
- Renu Kumari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindari 305817, India
| | - Divya Gupta
- Department of Biochemistry, Central University of Rajasthan, Bandarsindari 305817, India
| | - Preetom Regon
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Kocsy Gábor
- Centre for Agricultural Research, HUN-REN Centre for Agricultural Research, Agricultural Institute, Brunszvik u. 2, Martonvásár 2462, Hungary
| | - Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Bandarsindari 305817, India.
| |
Collapse
|
2
|
Liu W, Zhang Y, Zhang B, Zou H. Expression of ZmNAGK in tobacco enhances heat stress tolerance via activation of antioxidant-associated defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107719. [PMID: 37148659 DOI: 10.1016/j.plaphy.2023.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Heat stress severely inhibits plant growth and limits crop yields. Thus, it is crucial to identify genes that are associated with plant heat stress responses. Here, we report a maize (Zea mays L.) gene, N-acetylglutamate kinase (ZmNAGK), that positively enhances plant heat stress tolerance. The ZmNAGK expression level was significantly up-regulated by heat stress in maize plants, and ZmNAGK was found to be localized in maize chloroplasts. Phenotypic analysis showed that overexpressing of ZmNAGK enhanced the tolerance of tobacco to heat stress both in the seed germination and seedling growth stages. Further physiological analysis showed that ZmNAGK overexpression in tobacco could alleviate oxidative damages that occurred during heat stress via activation of antioxidant defense signaling. Transcriptome analysis revealed that ZmNAGK could modulate the expression of antioxidant-enzyme encoding genes, such as ascorbate peroxidase 2 (APX2) and superoxide dismutase C (SODC), and heat shock network genes. Taken together, we have identified a maize gene that can provide plants with heat tolerance through the induction of antioxidant-associated defense signaling.
Collapse
Affiliation(s)
- Weijuan Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| | - Yan Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Binglin Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Huawen Zou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, China; College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
3
|
Yijun G, Zhiming X, Jianing G, Qian Z, Rasheed A, Hussain MI, Ali I, Shuheng Z, Hassan MU, Hashem M, Mostafa YS, Wang Y, Chen L, Xiaoxue W, Jian W. The intervention of classical and molecular breeding approaches to enhance flooding stress tolerance in soybean - An review. FRONTIERS IN PLANT SCIENCE 2022; 13:1085368. [PMID: 36643298 PMCID: PMC9835000 DOI: 10.3389/fpls.2022.1085368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Abiotic stresses and climate changes cause severe loss of yield and quality of crops and reduce the production area worldwide. Flooding stress curtails soybean growth, yield, and quality and ultimately threatens the global food supply chain. Flooding tolerance is a multigenic trait. Tremendous research in molecular breeding explored the potential genomic regions governing flood tolerance in soybean. The most robust way to develop flooding tolerance in soybean is by using molecular methods, including quantitative trait loci (QTL) mapping, identification of transcriptomes, transcription factor analysis, CRISPR/Cas9, and to some extent, genome-wide association studies (GWAS), and multi-omics techniques. These powerful molecular tools have deepened our knowledge about the molecular mechanism of flooding stress tolerance. Besides all this, using conventional breeding methods (hybridization, introduction, and backcrossing) and other agronomic practices is also helpful in combating the rising flooding threats to the soybean crop. The current review aims to summarize recent advancements in breeding flood-tolerant soybean, mainly by using molecular and conventional tools and their prospects. This updated picture will be a treasure trove for future researchers to comprehend the foundation of flooding tolerance in soybean and cover the given research gaps to develop tolerant soybean cultivars able to sustain growth under extreme climatic changes.
Collapse
Affiliation(s)
- Guan Yijun
- College of Life Sciences, Northwest Agricultural and Forestry University, Yangling, Shanxi, China
| | - Xie Zhiming
- College of Life Sciences, Baicheng Normal University, Baicheng, Jilin, China
| | - Guan Jianing
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Zhao Qian
- Changchun Normal University, College of Life Sciences, Changchun, China
| | - Adnan Rasheed
- Changchun Normal University, College of Life Sciences, Changchun, China
- Jilin Changfa Modern Agricultural Science and Technology Group Co., Ltd., Changchun, China
| | | | - Iftikhar Ali
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhang Shuheng
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences , Jiangxi Agricultural University, Nanchang, China
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Asiut University, Assiut, Egypt
| | - Yasser S. Mostafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Yueqiang Wang
- Jilin Academy of Agricultural Sciences and National Engineering Research Center for Soybean, Changchun, China
| | - Liang Chen
- Jilin Academy of Agricultural Sciences and National Engineering Research Center for Soybean, Changchun, China
| | - Wang Xiaoxue
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wei Jian
- Changchun Normal University, College of Life Sciences, Changchun, China
- Jilin Changfa Modern Agricultural Science and Technology Group Co., Ltd., Changchun, China
| |
Collapse
|
4
|
Chen TC, Chou SY, Chen MC, Lin JS. IbTLD modulates reactive oxygen species scavenging and DNA protection to confer salinity stress tolerance in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111415. [PMID: 35963494 DOI: 10.1016/j.plantsci.2022.111415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Plants accumulate reactive oxygen species (ROS) that may damage the cells under prolonged stress conditions. Reduction of the excessive ROS production can alleviate oxidative damage and enhance the survival rates under stress. TLDc-containing protein (TLD) was reported to confer tolerance to oxidative stress, but the regulatory mechanism of TLD remains unclear. In this study, we ectopically overexpressed the Ipomoea batatas TLDc gene (IbTLD) in tobacco and characterized its functions. RNA-sequencing analysis and Gene Ontology term enrichment analysis revealed that IbTLD up-regulates auxin-responsive genes in response to oxidative stress. Under salinity stress, the IbTLD transgenic lines showed higher germination rates, chlorophyll contents, and root lengths than wild type (W38). In addition, the IbTLD transgenic lines showed higher expression of ROS scavenging genes, nudix hydrolases, ROS scavenging enzyme activity, and lesser DNA damage compared to W38 under salinity stress. Therefore, our results suggest that IbTLD activates the expression of ROS scavenging genes and confers tolerance to salinity stress in planta.
Collapse
Affiliation(s)
- Tsung-Chi Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Si-Yun Chou
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ming-Cheng Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
5
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
6
|
Effects of cadmium stress on physiological indexes and fruiting body nutritions of Agaricus brasiliensis. Sci Rep 2021; 11:8653. [PMID: 33883568 PMCID: PMC8060259 DOI: 10.1038/s41598-021-87349-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, 0, 0.5, 1, 1.5, 2, 4, 6 and 8 mg·kg-1 of cadmium were added to the cultivation materials. In order to study the effects of different concentrations of Cd stress on J1 and J77, the contents of antioxidant enzymes, proline and malondialdehyde, Cd content, agronomic traits and yield of fruiting bodies of Agaricus brasiliensis were determined, and the nutritional components such as polysaccharide, triterpene, protein, total sugar and total amino acid were determined. The results showed that the physiological indexes of strain J1 and J77 changed regularly under different concentrations of Cd stress. J1 was a high absorption and low tolerance variety, while J77 was a low absorption and high tolerance variety. Low concentration of Cd promoted the growth of strain J1, and higher concentration of Cd promoted the growth of strain J77. The contents of protein and total amino acids in the two strains changed greatly, followed by polysaccharides, which indicated that Cd stress had the greatest impact on the three nutrients, and other nutrients were not sensitive to Cd stress.
Collapse
|