1
|
Zeng J, Huang F, Zhang N, Wu C, Lin J, Lin S, Pan Z, Lei X, Zheng J, Guo J, Hu W. Overexpression of the cassava (Manihot esculenta) PP2C26 gene decreases drought tolerance and abscisic acid responses in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2025; 760:151715. [PMID: 40157287 DOI: 10.1016/j.bbrc.2025.151715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) stands as a pivotal food crop within tropical and subtropical regions. With its inherent drought-tolerant traits, cassava proves to be an ideal candidate for investigating drought tolerance mechanisms in staple crops. Although protein phosphatase 2C (PP2Cs) plays a critical role in drought stress responses in plants, the molecular mechanism of PP2Cs in cassava has yet to be elucidated. RESULTS In this research, we cloned MePP2C26, a member of group A PP2Cs, which exhibited significant upregulation following treatments with mannitol, NaCl, and ABA. Arabidopsis transgenic lines overexpressing MePP2C26 exhibited reduced drought tolerance, with survival rates of 39 %, 37 %, and 39 % for OV2, OV3, and OV6 lines, respectively, compared to 53 % in wild-type (WT) and 52 % in vector control (VC) plants. Additionally, these transgenic lines showed altered responses to exogenous ABA, as MePP2C26 overexpression significantly alleviated ABA-induced inhibition of seed germination and root growth. These lines displayed elevated levels of malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS), accompanied by reduced activities of catalase (CAT) and peroxidase (POD) as well as decreased proline accumulation compared to the wild type (WT) under drought stress conditions. Furthermore, MePP2C26 was shown to downregulate the expression of genes involved in the ABA signaling pathway (including AtSnRK2.6, ABF2, ABF3, RD26, and RD29B) under drought conditions, as evidenced by the transgenic line exhibiting consistently lower expression levels of these genes (despite their drought-induced upregulation in both transgenic and wild-type plants) compared to the WT. MePP2C26 was found to be localized in the nucleus and exhibited self-activation. Moreover, a number of MePYLs (MePYL1, MePYL4-9, MePYL11-13) were found to interact with MePP2C26 in the presence or absence of ABA. CONCLUSIONS In conclusion, the results of this study indicate that MePP2C26 acts as a negative regulator in both drought tolerance and ABA signaling pathways in Arabidopsis.
Collapse
Affiliation(s)
- Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China.
| | - Feifei Huang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Ning Zhang
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Chunlai Wu
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China; The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Jiamiao Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Suyan Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Zimo Pan
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Xinfang Lei
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Guangdong Provincial Engineering and Technology Research Center of Special Fruit and Vegetables in Northern Region, North Guangdong Engineering Technology Research Center for the Efficient Utilization of Water and Soil Resources, School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China.
| | - Wei Hu
- Coconut Research Institute, National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China.
| |
Collapse
|
2
|
Kukri A, Czékus Z, Gallé Á, Nagy G, Zsindely N, Bodai L, Galgóczy L, Hamow KÁ, Szalai G, Ördög A, Poór P. Exploring the effects of red light night break on the defence mechanisms of tomato against fungal pathogen Botrytis cinerea. PHYSIOLOGIA PLANTARUM 2024; 176:e14504. [PMID: 39191700 DOI: 10.1111/ppl.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Plant infections caused by fungi lead to significant crop losses worldwide every year. This study aims to better understand the plant defence mechanisms regulated by red light, in particular, the effects of red light at night when most phytopathogens are highly infectious. Our results showed that superoxide production significantly increased immediately after red light exposure and, together with hydrogen peroxide levels, was highest at dawn after 30 min of nocturnal red-light treatment. In parallel, red-light-induced expression and increased the activities of several antioxidant enzymes. The nocturnal red light did not affect salicylic acid but increased jasmonic acid levels immediately after illumination, whereas abscisic acid levels increased 3 h after nocturnal red-light exposure at dawn. Based on the RNAseq data, red light immediately increased the transcription of several chloroplastic chlorophyll a-b binding protein and circadian rhythm-related genes, such as Constans 1, CONSTANS interacting protein 1 and zinc finger protein CONSTANS-LIKE 10. In addition, the levels of several transcription factors were also increased after red light exposure, such as the DOF zinc finger protein and a MYB transcription factor involved in the regulation of circadian rhythms and defence responses in tomato. In addition to identifying these key transcription factors in tomato, the application of red light at night for one week not only reactivated key antioxidant enzymes at the gene and enzyme activity level at dawn but also contributed to a more efficient and successful defence against Botrytis cinerea infection.
Collapse
Affiliation(s)
- András Kukri
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | | | - Attila Ördög
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Zeng J, Wu C, Ye X, Zhou J, Chen Y, Li L, Lin M, Wang S, Liu S, Yan Y, Tie W, Yang J, Yan F, Zeng L, Liu Y, Hu W. MePP2C24, a cassava (Manihot esculenta) gene encoding protein phosphatase 2C, negatively regulates drought stress and abscisic acid responses in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108291. [PMID: 38141400 DOI: 10.1016/j.plaphy.2023.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Abscisic acid (ABA) signaling plays a crucial role in plant development and response to abiotic/biotic stress. However, the function and regulation of protein phosphatase 2C (PP2C), a key component of abscisic acid signaling, under abiotic stress are still unknown in cassava, a drought-tolerant crop. In this study, a cassava PP2C gene (MePP2C24) was cloned and characterized. The MePP2C24 transcripts increased in response to mannitol, NaCl, and ABA. Overexpression of MePP2C24 in Arabidopsis resulted in increased sensitivity to drought stress and decreased sensitivity to exogenous ABA. This was demonstrated by transgenic lines having higher levels of malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS), lower activities of catalase (CAT) and peroxidase (POD), and lower proline content than wild type (WT) under drought stress. Moreover, MePP2C24 overexpression caused decrease in expression of drought-responsive genes related to ABA signaling pathway. In addition, MePP2C24 was localized in the cell nucleus and showed self-activation. Furthermore, many MePYLs (MePYL1, MePYL4, MePYL7-9, and MePYL11-13) could interact with MePP2C24 in the presence of ABA, and MePYL1 interacted with MePP2C24 in both the presence and absence of ABA. Additionally, MebZIP11 interacted with the promoter of MePP2C24 and exerted a suppressive effect. Taken together, our results suggest that MePP2C24 acts as a negative regulator of drought tolerance and ABA response.
Collapse
Affiliation(s)
- Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China.
| | - Chunlai Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Jiewei Zhou
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Yingtong Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Lizhen Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Man Lin
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Shuting Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China
| | - Siwen Liu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Yan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Weiwei Tie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Jinghao Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China
| | - Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Liwang Zeng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China.
| | - Yujia Liu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong, China.
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Institute of Scientific and Technical Information, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 517101, China.
| |
Collapse
|
4
|
Saucedo-García M, González-Solís A, Rodríguez-Mejía P, Lozano-Rosas G, Olivera-Flores TDJ, Carmona-Salazar L, Guevara-García AA, Cahoon EB, Gavilanes-Ruíz M. Sphingolipid Long-Chain Base Signaling in Compatible and Non-Compatible Plant-Pathogen Interactions in Arabidopsis. Int J Mol Sci 2023; 24:ijms24054384. [PMID: 36901815 PMCID: PMC10002605 DOI: 10.3390/ijms24054384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
The chemical diversity of sphingolipids in plants allows the assignment of specific roles to special molecular species. These roles include NaCl receptors for glycosylinositolphosphoceramides or second messengers for long-chain bases (LCBs), free or in their acylated forms. Such signaling function has been associated with plant immunity, with an apparent connection to mitogen-activated protein kinase 6 (MPK6) and reactive oxygen species (ROS). This work used in planta assays with mutants and fumonisin B1 (FB1) to generate varying levels of endogenous sphingolipids. This was complemented with in planta pathogenicity tests using virulent and avirulent Pseudomonas syringae strains. Our results indicate that the surge of specific free LCBs and ceramides induced by FB1 or an avirulent strain trigger a biphasic ROS production. The first transient phase is partially produced by NADPH oxidase, and the second is sustained and is related to programmed cell death. MPK6 acts downstream of LCB buildup and upstream of late ROS and is required to selectively inhibit the growth of the avirulent but not the virulent strain. Altogether, these results provide evidence that a LCB- MPK6- ROS signaling pathway contributes differentially to the two forms of immunity described in plants, upregulating the defense scheme of a non-compatible interaction.
Collapse
Affiliation(s)
- Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico
| | - Ariadna González-Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Priscila Rodríguez-Mejía
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Guadalupe Lozano-Rosas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | | | - Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - A. Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Edgar B. Cahoon
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico
- Correspondence:
| |
Collapse
|
5
|
Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030432. [PMID: 36771517 PMCID: PMC9921048 DOI: 10.3390/plants12030432] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 06/02/2023]
Abstract
Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Ajay Kumar
- Department of Postharvest Science, ARO, Volcani Center, Bet Dagan 50250, Israel
| | | | - Fannie I. Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ciudad Obregón 85000, Mexico
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| |
Collapse
|
6
|
Roca-Couso R, Flores-Félix JD, Rivas R. Mechanisms of Action of Microbial Biocontrol Agents against Botrytis cinerea. J Fungi (Basel) 2021; 7:1045. [PMID: 34947027 PMCID: PMC8707566 DOI: 10.3390/jof7121045] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus responsible for economic losses from USD 10 to 100 billion worldwide. It affects more than 1400 plant species, thus becoming one of the main threats to the agriculture systems. The application of fungicides has for years been an efficient way to control this disease. However, fungicides have negative environmental consequences that have changed popular opinion and clarified the need for more sustainable solutions. Biopesticides are products formulated based on microorganisms (bacteria or fungi) with antifungal activity through various mechanisms. This review gathers the most important mechanisms of antifungal activities and the microorganisms that possess them. Among the different modes of action, there are included the production of diffusible molecules, both antimicrobial molecules and siderophores; production of volatile organic compounds; production of hydrolytic enzymes; and other mechanisms, such as the competition and induction of systemic resistance, triggering an interaction at different levels and inhibition based on complex systems for the production of molecules and regulation of crop biology. Such a variety of mechanisms results in a powerful weapon against B. cinerea; some of them have been tested and are already used in the agricultural production with satisfactory results.
Collapse
Affiliation(s)
- Rocío Roca-Couso
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - José David Flores-Félix
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Raúl Rivas
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Unit, University of Salamanca-CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
7
|
Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Sci Rep 2021; 11:9517. [PMID: 33947949 PMCID: PMC8096818 DOI: 10.1038/s41598-021-89061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
The present work is aimed to examine the genetic variability and the distribution pattern of beneficial Trichoderma spp. isolated from rhizosphere samples and their mode of action in improving the plant health. A total of 131 suspected fungi were isolated from the rhizospheric soil and 91 isolates were confirmed as Trichoderma spp. T. asperellum and T. harzianum were found high in the frequency of occurrence. Genetic diversity analysis using RAPD and ISSR revealed the diverse distribution pattern of Trichoderma spp. indicating their capability to adapt to broad agroclimatic conditions. Analysis of genetic diversity using molecular markers revealed intra-species diversity of isolated Trichoderma spp. The frequency of pearl millet (PM) root colonization by Trichoderma spp. was found to be 100%. However, they showed varied results for indole acetic acid, siderophore, phosphate solubilization, β-1,3-glucanase, chitinase, cellulase, lipase, and protease activity. Downy mildew disease protection studies revealed a strong involvement of Trichoderma spp. in direct suppression of the pathogen (mean 37.41) in the rhizosphere followed by inducing systemic resistance. Our findings highlights the probable distribution and diversity profile of Trichoderma spp. as well as narrate the possible utilization of Trichoderma spp. as microbial fungicides in PM cultivation across different agroclimatic zones of India.
Collapse
|