1
|
Ducrocq F, Piutti S, Henychová A, Villerd J, Laflotte A, Girardeau L, Grosjean J, Patzak J, Hehn A. Fingerprinting and chemotyping approaches reveal a wide genetic and metabolic diversity among wild hops (Humulus lupulus L.). PLoS One 2025; 20:e0322330. [PMID: 40327676 PMCID: PMC12054859 DOI: 10.1371/journal.pone.0322330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Hop (Humulus lupulus L.) is an emblematic industrial crop in the French North East region that developed at the same time as the brewing activity. Presently, this sector, especially microbreweries, are interested in endemic wild hops, which give beer production a local signature. In this study, we investigated the genetic and metabolic diversity of thirty-six wild hops sampled in various ecological environments. These wild accessions were propagated aeroponically and cultivated under uniform conditions (the same soil and the same environmental factors). Our phytochemical approach based on UHPLC-ESI-MS/MS analysis led to the identification of three metabolic clusters based on leaf content and characterized by variations in the contents of twelve specialized metabolites that were identified (including xanthohumol, bitter acids, and their oxidized derivatives). Furthermore, molecular characterization was carried out using sixteen EST-SSR microsatellites, allowing a genetic affiliation of our wild hops with hop varieties cultivated worldwide and wild hops genotyped to date using this method. Genetic proximity was observed for both European wild and hop varieties, especially for Strisselspalt, the historical variety of our region. Finally, our findings collectively assessed the impact of the hop genotype on the chemical phenotype through multivariate regression tree (MRT) analysis. Our results highlighted the 'WRKY 224' allele as a key discriminator between high- and low-metabolite producers. Moreover, the model based on genetic information explained 40% of the variance in the metabolic data. However, despite this strong association, the model lacked predictive power, suggesting that its applicability may be confined to the datasets analyzed.
Collapse
Affiliation(s)
| | | | | | - Jean Villerd
- Université de Lorraine, INRAE, LAE, Nancy, France
| | - Alexandre Laflotte
- Université de Lorraine, Centre de Recherche et Développement de la Bouzule, Nancy, France
| | | | | | - Josef Patzak
- Hop Research Institute Co. Ltd., Žatec, Czech Republic
| | - Alain Hehn
- Université de Lorraine, INRAE, LAE, Nancy, France
| |
Collapse
|
2
|
Salihu B, Samarakoon T, Pulaj B, Quave CL, Mustafa B, Hajdari A. Analysis of chemical and genetic variability in wild hop (Humulus lupulus L.) populations of Kosovo. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39087602 DOI: 10.1111/plb.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Hops is an economically important species due to its diverse secondary metabolites and extensive use in the brewing and medicinal industries. Although hops is widely distributed in Kosovo, the chemical composition of its essential oils and genetic variability of wild populations remain understudied. Therefore, this study aimed to evaluate the chemical and genetic variability of Kosovo's wild hop population using essential oil constituents and microsatellite (simple sequence repeat - SSR) markers. Female hop inflorescences were collected from 21 wild populations in Kosovo. Essential oils were extracted from the dried plant material using a Clevenger apparatus. Chemical composition of the essential oils was analysed using GC-FID-MS. DNA was extracted from dried leaves, and 15 SSR markers were used for fragment analysis. The main constituents of the essential oil were myrcene, α-humulene, (E)-β-farnesene, α-selinene, β-selinene, and E-caryophyllene. Statistical analyses based on chemical composition of essential oils and SSR markers highlighted the low variability among populations and high variability within populations. These findings provide valuable insights for developing strategies for potential use and conservation of wild hop populations in Kosovo, laying the groundwork for future research and comparison with commercial cultivars to assess their breeding potential.
Collapse
Affiliation(s)
- B Salihu
- Department of Biology, Faculty of Mathematical and Natural Science, University of Prishtina, Prishtina, Kosovo
| | - T Samarakoon
- Emory Herbarium, Emory University, Atlanta, GA, USA
| | - B Pulaj
- Department of Biology, Faculty of Mathematical and Natural Science, University of Prishtina, Prishtina, Kosovo
| | - C L Quave
- Emory Herbarium, Emory University, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - B Mustafa
- Department of Biology, Faculty of Mathematical and Natural Science, University of Prishtina, Prishtina, Kosovo
| | - A Hajdari
- Department of Biology, Faculty of Mathematical and Natural Science, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
3
|
Somalraju A, Soto-Cerda B, Ghose K, McCallum J, Knox R, Fofana B. Structure and genetic diversity of Canadian Maritimes wild hops. Genome 2024; 67:24-30. [PMID: 37738664 DOI: 10.1139/gen-2023-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Studies on the northeastern American native hops (Humulus lupulus ssp. lupuloides) from the Canadian Maritimes are scarce. This study aimed to evaluate the genetic structure and diversity among 25 wild-collected hops from three Canadian Maritime provinces using microsatellite (simple sequence repeat (SSR)) markers. Based on 43 SSR markers, four distinct subgroups were found, with a low molecular variance (19%) between subgroups and a high variance (81%) within subgroups. The Nei's unbiased genetic distance between clusters ranged from 0.01 to 0.08, the genetic distance between clusters 2 and 3 being the farthest and that between clusters 1 and 2 the closest. Cluster 2 captured the highest overall diversity. A total of 18 SSR markers clearly discriminated hop clones by detecting putative subspecies-specific haplotypes, differentiating clones of native-wild H. lupulus ssp. lupuloides from the naturalized old and modern hop cultivars. Seven of the 18 SSR markers also differentiated two clones from the same site from one another. The study is the first, using molecular markers, to identify SSR markers with potential for intellectual property protection in Canadian Maritimes hops. The SSR markers herein used can be prime tools for hop breeders and growers in the region.
Collapse
Affiliation(s)
- Ashok Somalraju
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE C1A 4N6, Canada
| | - Braulio Soto-Cerda
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Kaushik Ghose
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Jason McCallum
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE C1A 4N6, Canada
| | - Ron Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE C1A 4N6, Canada
| |
Collapse
|
4
|
Hops Germplasm: Phytochemical Characterization of Wild Humulus lupulus of Central and Northern Italy. PLANTS 2022; 11:plants11121564. [PMID: 35736715 PMCID: PMC9231044 DOI: 10.3390/plants11121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/21/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
Abstract
Hops are widespread as a wild plant in almost all Northern and Central Italy, and the characterization of wild populations is attracting considerable interest in verifying their potential use. The development of hops as agricultural crop can be an interesting opportunity, both for farms that would have available a new crop to be included in the crop system and for craft breweries interested in characterizing beers with local raw materials. In the present work, 14 wild hop accessions coming from various Italian locations were characterized and compared with 2 commercial varieties (Cascade and Hallertau Taurus) grown in the same environments. The cones were analyzed to measure the content of α- and β-acids, polyphenols, flavonoids, and the anti-radical power. The α-acid content of wild hops was generally low, while the β-acid content was very variable and quite high in some samples. The content in polyphenols and flavonoids and the antiradical power were high and generally similar to those of the commercial varieties. Therefore, the analyzed genotypes are not very suitable for use as bitter hops in beer production, while further analysis may indicate a possible use as aroma hops, or for herbal and pharmaceutical purposes, thanks to their antioxidant content.
Collapse
|
5
|
Assessment of the Genetic and Phytochemical Variability of Italian Wild Hop: A Route to Biodiversity Preservation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Northern Italy has an enormous heritage of hop biodiversity that need to be exploited and studied. The preservation and valorization through the characterization of the existent biodiversity is a primary goal of the European Green Deal 2023–2030. The aim of this study was to acquire information on the biodiversity of Italian wild hops. Methods: Genetic characterization of sixty accessions was done resorting to Single Sequence Repeated (SSR) markers. Phytochemical characterization of wild hops was achieved using: (i) high-performance liquid chromatography with ultraviolet detection for bitter acids quantification, (ii) steam distillation for essential oils quantification and (iii) Gas Chromatography-Mass Spectrometry for the determination of the aromatic profile. Results: The eight SSR primers showed high Polymorphic Information Content (PIC), especially HlGA23. α-Acids reached values between 0 and 4.125. The essential oils analysis highlighted variability within the studied population, with some accessions characterized by important spicy fraction, and others by fruity and floral notes. Conclusions: The present study allowed the characterization of Italian wild hops and demonstrated an interesting biodiversity. Part of this biodiversity have been shown to be potentially suitable for use in brewing. Moreover, several genotypes could be used in breeding programs to obtain new more sustainable varieties.
Collapse
|
6
|
Driskill M, Pardee K, Hummer KE, Zurn JD, Amundsen K, Wiles A, Wiedow C, Patzak J, Henning JA, Bassil NV. Two fingerprinting sets for Humulus lupulus based on KASP and microsatellite markers. PLoS One 2022; 17:e0257746. [PMID: 35421090 PMCID: PMC9009645 DOI: 10.1371/journal.pone.0257746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Verification of clonal identity of hop (Humulus lupulus L.) cultivars within breeding programs and germplasm collections is vital to conserving genetic resources. Accurate and economic DNA-based tools are needed in dioecious hop to confirm identity and parentage, neither of which can be reliably determined from morphological observations. In this study, we developed two fingerprinting sets for hop: a 9-SSR fingerprinting set containing high-core repeats that can be run in a single PCR reaction and a kompetitive allele specific PCR (KASP) assay of 25 single nucleotide polymorphisms (SNPs). The SSR set contains a sex-linked primer pair, HI-AGA7, that was used to genotype 629 hop accessions from the US Department of Agriculture (USDA) National Clonal Germplasm Repository (NCGR), the USDA Forage Seed and Cereal Research (FSCR), and the University of Nebraska-Lincoln (UNL) collections. The SSR set identified unique genotypes except for 89 sets of synonymous samples. These synonyms included: cultivars with different designations, the same cultivars from different sources, heat-treated clones, and clonal variants. Population structure analysis clustered accessions into wild North American (WNA) and cultivated groups. Diversity was slightly higher in the cultivated samples due to larger sample size. Parentage and sib-ship analyses were used to identify true-to-type cultivars. The HI-AGA7 marker generated two male- and nine female-specific alleles among the cultivated and WNA samples. The SSR and KASP fingerprinting sets were compared in 190 samples consisting of cultivated and WNA accession for their ability to confirm identity and assess diversity and population structure. The SSR fingerprinting set distinguished cultivars, selections and WNA accessions while the KASP assays were unable to distinguish the WNA samples and had lower diversity estimates than the SSR set. Both fingerprinting sets are valuable tools for identity confirmation and parentage analysis in hop for different purposes. The 9-SSR assay is cost efficient when genotyping a small number of wild and cultivated hop samples (<96) while the KASP assay is easy to interpret and cost efficient for genotyping a large number of cultivated samples (multiples of 96).
Collapse
Affiliation(s)
- Mandie Driskill
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, Oregon, United States of America
| | - Katie Pardee
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, Oregon, United States of America
| | - Kim E. Hummer
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, Oregon, United States of America
| | - Jason D. Zurn
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Annette Wiles
- Midwest Hops Producers, Plattsmouth, Nebraska, United States of America
| | - Claudia Wiedow
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Josef Patzak
- Hop Research Institute, Co, Ltd., Žatec, Czech Republic
| | - John A. Henning
- USDA-ARS, Forage Seed and Cereal Research Unit, Corvallis, Oregon, United States of America
| | - Nahla V. Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
7
|
High Genetic Diversity and Low Population Differentiation in Wild Hop (Humulus lupulus L.) from Croatia. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hop (Humulus lupulus L.) is used in the brewing industry as a source of compounds responsible for the bitterness, aroma, and preservative properties of beer. In this study, we used microsatellite markers to investigate genetic diversity and genetic differentiation of wild hop populations sampled in the northwestern part of Croatia. Analysis of 12 microsatellite loci revealed high diversity and weak population differentiation among wild hop populations. A total of 152 alleles were determined with an average of 12.67 alleles per locus. Observed heterozygosity ranged from 0.689 to 0.839 (average 0.767) and expected heterozygosity ranged from 0.725 to 0.789 (average 0.760). A total of 38 private alleles were detected. The data suggest that H. lupulus populations are not affected by recent bottlenecks. The degree of genetic differentiation among populations was low and not significant for most pairwise FST values, except for the pair of geographically most distant populations. The results did not indicate the existence of genetic structure among the sampled populations. The high genetic diversity and low differentiation among populations, combined with the absence of isolation by distance, indicate the existence of substantial gene flow among wild hop populations. Therefore, extensive sampling per population is clearly required to assess the genetic diversity of hop populations. Sampling strategies involving sampling across a large number of localities represented by only a few samples could lead to erroneous conclusions.
Collapse
|
8
|
Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, Verma E, Ahn KS, Kunnumakkara AB. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life 2021; 73:1016-1044. [PMID: 34170599 DOI: 10.1002/iub.2522] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Cancer is a major public health concern due to high mortality and poor quality of life of patients. Despite the availability of advanced therapeutic interventions, most treatment modalities are not efficacious, very expensive, and cause several adverse side effects. The factors such as drug resistance, lack of specificity, and low efficacy of the cancer drugs necessitate developing alternative strategies for the prevention and treatment of this disease. Xanthohumol (XN), a prenylated chalcone present in Hop (Humulus lupulus), has been found to possess prominent activities against aging, diabetes, inflammation, microbial infection, and cancer. Thus, this manuscript thoroughly reviews the literature on the anti-cancer properties of XN and its various molecular targets. XN was found to exert its inhibitory effect on the growth and proliferation of cancer cells via modulation of multiple signaling pathways such as Akt, AMPK, ERK, IGFBP2, NF-κB, and STAT3, and also modulates various proteins such as Notch1, caspases, MMPs, Bcl-2, cyclin D1, oxidative stress markers, tumor-suppressor proteins, and miRNAs. Thus, these reports suggest that XN possesses enormous therapeutic potential against various cancers and could be potentially used as a multi-targeted anti-cancer agent with minimal adverse effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Queen Saikia
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|