1
|
Hu W, Loka DA, Luo Y, Yu H, Wang S, Zhou Z. CYTOKININ DEHYDROGENASE suppression increases intrinsic water-use efficiency and photosynthesis in cotton under drought. PLANT PHYSIOLOGY 2025; 197:kiaf081. [PMID: 39977242 DOI: 10.1093/plphys/kiaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Drought reduces endogenous cytokinin (CK) content and disturbs plant water balance and photosynthesis. However, the effect of higher endogenous CK levels (achieved by suppressing cytokinin dehydrogenase [CKX] genes) on plant water status and photosynthesis under drought stress is unknown. Here, pot experiments were conducted with wild-type (WT) cotton (Gossypium hirsutum) and 2 GhCKX suppression lines (CR-3 and CR-13) to explore the effect of higher endogenous CK levels on leaf water utilization and photosynthesis under drought stress. The GhCKX suppression lines had a higher leaf net photosynthetic rate (AN) and intrinsic water-use efficiency (iWUE) than WT under drought. This increase was attributed to the decoupling of stomatal conductance (gs) and mesophyll conductance (gm) in the suppression lines in response to drought. GhCKX suppression increased gm but maintained gs relative to WT under drought, and the increased gm was associated with altered anatomical traits, including decreased cell wall thickness (Tcw) and increased surface area of chloroplast-facing intercellular airspaces per unit leaf area (Sc/S), as well as altered cell wall composition, especially decreased cellulose levels. This study provides evidence that increased endogenous CK levels can simultaneously enhance AN and iWUE in cotton under drought conditions and establishes a potential mechanism for this effect. These findings provide a potential strategy for breeding drought-tolerant crops or exploring alternative methods to promote crop drought tolerance.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Dimitra A Loka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization, Larisa 41335, Greece
| | - Yuanyu Luo
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Huilian Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| |
Collapse
|
2
|
Sun D, Lei Z, Carriquí M, Zhang Y, Liu T, Wang S, Song K, Zhu L, Zhang W, Zhang Y. Reductions in mesophyll conductance under drought stress are influenced by increases in cell wall chelator-soluble pectin content and denser microfibril alignment in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1116-1130. [PMID: 39844343 DOI: 10.1093/jxb/erae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall component on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall component and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange. Drought stress resulted in a significant thickening of cell walls and a decrease in gm. Concurrently, drought stress increased the content of chelator-soluble pectin and cellulose while reducing hemicellulose content. The alignment of cellulose microfibrils became more parallel and their diameter increased under drought conditions, suggesting a decrease in cell wall effective porosity which coincides with the observed reduction in gm. This research demonstrates that reduced gm typically observed under drought stress is related not only to thickened cell walls, but also to ultra-anatomical and compositional variations. Specifically, increases in cellulose content, diameter, and a highly aligned arrangement of cellulose microfibrils collectively contributed to an increase in Tcw, which, together with increases in chelator-soluble pectin content, resulted in an increased cell wall resistance to CO2 diffusion.
Collapse
Affiliation(s)
- Dongsheng Sun
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Zhangying Lei
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Yujie Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Tianyang Liu
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Shengnan Wang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Kunhao Song
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Lan Zhu
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| | - Yali Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
3
|
Ishfaq A, Haidri I, Shafqat U, Khan I, Iqbal M, Mahmood F, Hassan MU. Impact of biogenic zinc oxide nanoparticles on physiological and biochemical attributes of pea ( Pisum sativum L.) under drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:11-26. [PMID: 39901959 PMCID: PMC11787093 DOI: 10.1007/s12298-024-01537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 02/05/2025]
Abstract
Drought is a significant environmental issue affecting crop yield, nutrient content, and human food. This study investigates the potential of zinc oxide nanoparticles (ZnO-NPs) in mitigating the negative effects of drought stress on pea (Pisum sativum L.). ZnO-NPs were applied through seed priming, foliar application, and soil drenching at 0, 50, 100, and 150 ppm concentrations. Our findings showed that these three methods were more effective at different concentrations of ZnO-NPs. Seed priming at 50 ppm, foliar application at 100 ppm, and soil drenching at 150 ppm performed best in mitigating drought stress. Results showed that primed seeds with zinc oxide nanoparticles (50 ppm) have improved the physical growth, physiological, antioxidant, and mineral content by 35%, 45%, 57%, and 13% under drought stress as compared to control. It was observed that foliar application of ZnO-NPs (100 ppm) has enhanced physical growth, physiological, antioxidant, and mineral content by 43%, 54%, 64%, and 15% under drought stress as compared to the control. However, application of ZnO-NPs (150 ppm) in soli drenching improved the physical growth, physiological, antioxidant, and mineral content by 47%, 60%, 64%, and 16% under drought stress as compared to control. Moreover, ZnO-NPs amendments at different concentrations significantly decreased osmotic stress. This study provides innovative evidence of ZnO-NPs to mitigate drought stress in plants through various applications, revealing their potential to boost resilience in agriculture in case of drought stress conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01537-3.
Collapse
Affiliation(s)
- Aneeza Ishfaq
- Department of Environmental Science, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Irfan Haidri
- Department of Environmental Science, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Usman Shafqat
- Department of Environmental Science, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38040 Pakistan
| | - Muhammad Iqbal
- Department of Environmental Science, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Faisal Mahmood
- Department of Environmental Science, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University Nanchang, Nanchang, China
| |
Collapse
|
4
|
Grandjean C, Veronesi C, Rusterucci C, Gautier C, Maillot Y, Leschevin M, Fournet F, Drouaud J, Marcelo P, Zabijak L, Delavault P, Simier P, Bouton S, Pageau K. Pectin Remodeling and Involvement of AtPME3 in the Parasitic Plant-Plant Interaction, Phelipanche ramosa- Arabidospis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2168. [PMID: 39124288 PMCID: PMC11314565 DOI: 10.3390/plants13152168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Phelipanche ramosa is a root parasitic plant fully dependent on host plants for nutrition and development. Upon germination, the parasitic seedling develops inside the infected roots a specific organ, the haustorium, thanks to the cell wall-degrading enzymes of haustorial intrusive cells, and induces modifications in the host's cell walls. The model plant Arabidopsis thaliana is susceptible to P. ramosa; thus, mutants in cell wall metabolism, particularly those involved in pectin remodeling, like Atpme3-1, are of interest in studying the involvement of cell wall-degrading enzymes in the establishment of plant-plant interactions. Host-parasite co-cultures in mini-rhizotron systems revealed that parasite attachments are twice as numerous and tubercle growth is quicker on Atpme3-1 roots than on WT roots. Compared to WT, the increased susceptibility in AtPME3-1 is associated with reduced PME activity in the roots and a lower degree of pectin methylesterification at the host-parasite interface, as detected immunohistochemically in infected roots. In addition, both WT and Atpme3-1 roots responded to infestation by modulating the expression of PAE- and PME-encoding genes, as well as related global enzyme activities in the roots before and after parasite attachment. However, these modulations differed between WT and Atpme3-1, which may contribute to different pectin remodeling in the roots and contrasting susceptibility to P. ramosa. With this integrative study, we aim to define a model of cell wall response to this specific biotic stress and indicate, for the first time, the role of PME3 in this parasitic plant-plant interaction.
Collapse
Affiliation(s)
- Cyril Grandjean
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Christophe Veronesi
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Christine Rusterucci
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Charlotte Gautier
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Yannis Maillot
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Maïté Leschevin
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Françoise Fournet
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Jan Drouaud
- Centre Régional de Ressources en Biologie Moléculaire UPJV, Bâtiment Serres-Transfert Rue Dallery—UFR des Sciences, Passage du Sourire d’Avril, F-80039 Amiens, France;
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, Université de Picardie Jules Verne, F-80000 Amiens, France; (P.M.); (L.Z.)
| | - Luciane Zabijak
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, Université de Picardie Jules Verne, F-80000 Amiens, France; (P.M.); (L.Z.)
| | - Philippe Delavault
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Philippe Simier
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Sophie Bouton
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Karine Pageau
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| |
Collapse
|
5
|
Xu Y, Du H, Mao F, Li X, Zhou G, Huang Z, Guo K, Zhang M, Luo X, Chen C, Zhao Y. Effects of chlorophyll fluorescence on environment and gross primary productivity of moso bamboo during the leaf-expansion stage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121185. [PMID: 38788407 DOI: 10.1016/j.jenvman.2024.121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Chlorophyll fluorescence is the long-wave light released by the residual energy absorbed by vegetation after photosynthesis and dissipation, which can directly and non-destructively reflect the photosynthetic state of plants from the perspective of the mechanism of photosynthetic process. Moso bamboo has a substantial carbon sequestration ability, and leaf-expansion stage is an important phenological period for carbon sequestration. Gross primary production (GPP) is a key parameter reflecting vegetation carbon sequestration process. However, the ability of chlorophyll fluorescence in moso bamboo to explain GPP changes is unclear. The research area of this study is located in the bamboo forest near the flux station of Anji County, Zhejiang Province, where an observation tower is built to monitor the carbon flux and meteorological change of bamboo forest. The chlorophyll fluorescence physiological parameters (Fp) and fluorescence yield (Fy) indices were measured and calculated for the leaves of newborn moso bamboo (I Du bamboo) and the old leaves of 4- to 5-year-old moso bamboo (Ⅲ Du bamboo) during the leaf-expansion stage. The chlorophyll fluorescence in response to the environment and its effect on carbon flux were analyzed. The results showed that: Fv/Fm, Y(II) and α of Ⅰ Du bamboo gradually increased, while Ⅲ Du bamboo gradually decreased, and FYint and FY687/FY738 of Ⅰ Du bamboo were higher than those of Ⅲ Du bamboo; moso bamboo was sensitive to changes in air temperature(Ta), relative humidity(RH), water vapor pressure(E), soil temperature(ST) and soil water content (SWC), the Fy indices of the upper, middle and lower layers were significantly correlated with Ta, E and ST; single or multiple vegetation indices were able to estimate the fluorescence yield indices well (all with R2 greater than 0.77); chlorophyll fluorescence (Fp and Fy indices) of Ⅰ Du bamboo and Ⅲ Du bamboo could explain 74.4% and 72.7% of the GPP variation, respectively; chlorophyll fluorescence and normalized differential vegetation index of the canopy (NDVIc) could estimate GPP well using random forest (Ⅰ Du bamboo: r = 0.929, RMSE = 0.069 g C·m-2; Ⅲ Du bamboo: r = 0.899, RMSE = 0.134 g C·m-2). The results of this study show that chlorophyll fluorescence can provide a basis for judging the response of moso bamboo to environmental changes and can well explain GPP. This study has important scientific significance for evaluating the potential mechanisms of growth, stress feedback and photosynthetic carbon sequestration of bamboo.
Collapse
Affiliation(s)
- Yanxin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Huaqiang Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Fangjie Mao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xuejian Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Zihao Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Keruo Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Meng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xin Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Chao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yinyin Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, China; School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
6
|
Zhou H, Peng J, Zhao W, Zeng Y, Xie K, Huang G. Leaf diffusional capacity largely contributes to the reduced photosynthesis in rice plants under magnesium deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108565. [PMID: 38537380 DOI: 10.1016/j.plaphy.2024.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Numerous studies have clarified the impacts of magnesium (Mg) on leaf photosynthesis from the perspectives of protein synthesis, enzymes activation and carbohydrate partitioning. However, it still remains largely unknown how stomatal and mesophyll conductances (gs and gm, respectively) are regulated by Mg. In the present study, leaf gas exchanges, leaf hydraulic parameters, leaf structural traits and cell wall composition were examined in rice plants grown under high and low Mg treatments to elucidate the impacts of Mg on gs and gm. Our results showed that reduction of leaf photosynthesis under Mg deficiency was mainly caused by the decreased gm, followed by reduced leaf biochemical capacity and gs, and leaf outside-xylem hydraulic conductance (Kox) was the major factor restricting gs under Mg deficiency. Moreover, increased leaf hemicellulose, lignin and pectin contents and decreased cell wall effective porosity were observed in low Mg plants relative to high Mg plants. These results suggest that Kox and cell wall composition play important roles in regulating gs and gm, respectively, in rice plants under Mg shortages.
Collapse
Affiliation(s)
- Haimei Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jiang Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanling Zhao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Kailiu Xie
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Guanjun Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
7
|
Parkash V, Snider JL, Virk G, Dhillon KK, Lee JM. Diffusional and Biochemical Limitations to Photosynthesis Under Water Deficit for Field-Grown Cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14281. [PMID: 38606698 DOI: 10.1111/ppl.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Water deficit stress limits net photosynthetic rate (AN), but the relative sensitivities of underlying processes such as thylakoid reactions, ATP production, carbon fixation reactions, and carbon loss processes to water deficit stress in field-grown upland cotton require further exploration. Therefore, the objective of the present study was to assess (1) the diffusional and biochemical mechanisms associated with water deficit-induced declines in AN and (2) associations between water deficit-induced variation in oxidative stress and energy dissipation for field-grown cotton. Water deficit stress was imposed for three weeks during the peak bloom stage of cotton development, causing significant reductions in leaf water potential and AN. Among diffusional limitations, mesophyll conductance was the major contributor to the AN decline. Several biochemical processes were adversely impacted by water deficit. Among these, electron transport rate and RuBP regeneration were most sensitive to AN-limiting water deficit. Carbon loss processes (photorespiration and dark respiration) were less sensitive than carbon assimilation, contributing to the water deficit-induced declines in AN. Increased energy dissipation via non-photochemical quenching or maintenance of electron flux to photorespiration prevented oxidative stress. Declines in AN were not associated with water deficit-induced variation in ATP production. It was concluded that diffusional limitations followed by biochemical limitations (ETR and RuBP regeneration) contributed to declines in AN, carbon loss processes partially contributed to the decline in AN, and increased energy dissipation prevented oxidative stress under water deficit in field-grown cotton.
Collapse
Affiliation(s)
- Ved Parkash
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - Gurpreet Virk
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | | | - Joshua M Lee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| |
Collapse
|
8
|
He J, Ng K, Qin L, Shen Y, Rahardjo H, Wang CL, Kew H, Chua YC, Poh CH, Ghosh S. Photosynthetic gas exchange, plant water relations and osmotic adjustment of three tropical perennials during drought stress and re-watering. PLoS One 2024; 19:e0298908. [PMID: 38416721 PMCID: PMC10901313 DOI: 10.1371/journal.pone.0298908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
Planting vegetation on slopes is an effective way of improving slope stability while enhancing the aesthetic appearance of the landscape. However, plants growing on slopes are susceptible to natural drought stress (DS) conditions which commonly lead to water deficit in plant tissues that affect plant health and growth. This study investigated the photosynthetic gas exchange, plant water status and proline accumulation of three tropical perennials namely Clerodendrum paniculatum, Ipomoea pes-caprae and Melastoma malabathricum after being subjected to DS and re-watering (RW). During DS, there was a significant decrease in light-saturated photosynthetic CO2 assimilation rate (Asat), stomatal conductance (gs sat), and transpiration rate (Tr) for all three plant species. Leaf relative water content, shoot water potential, and leaf, stem and root water content also declined during DS. Proline concentration increased for all three species during DS, reaching especially high levels for C. paniculatum, suggesting that it heavily relies on the accumulation of proline to cope with DS. Most of the parameters recovered almost completely to levels similar to well-watered plants after RW, apart from M. malabathricum. Strong linear correlations were found between Asat and gs sat and between gs sat and Tr. Ultimately, C. paniculatum and I. pes-caprae had better drought tolerance than M. malabathricum.
Collapse
Affiliation(s)
- Jie He
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Klaudia Ng
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lin Qin
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Yuanjie Shen
- Nanyang Technological University, School of Civil and Environmental Engineering, Singapore, Singapore
| | - Harianto Rahardjo
- Nanyang Technological University, School of Civil and Environmental Engineering, Singapore, Singapore
| | - Chien Looi Wang
- Housing & Development Board, Building & Research Institute, Singapore, Singapore
| | - Huiling Kew
- Housing & Development Board, Building & Research Institute, Singapore, Singapore
| | - Yong Chuan Chua
- Housing & Development Board, Building & Research Institute, Singapore, Singapore
| | - Choon Hock Poh
- Plant Science & Health and Centre for Urban Greenery and Ecology, National Parks Board Headquarters, Singapore, Singapore
| | - Subhadip Ghosh
- Plant Science & Health and Centre for Urban Greenery and Ecology, National Parks Board Headquarters, Singapore, Singapore
| |
Collapse
|
9
|
Jin N, Yu X, Dong J, Duan M, Mo Y, Feng L, Bai R, Zhao J, Song J, Dossa GGO, Lu H. Vertical variation in leaf functional traits of Parashorea chinensis with different canopy layers. FRONTIERS IN PLANT SCIENCE 2024; 15:1335524. [PMID: 38348271 PMCID: PMC10859428 DOI: 10.3389/fpls.2024.1335524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Introduction Canopy species need to shift their ecological adaptation to improve light and water resources utilization, and the study of intraspecific variations in plant leaf functional traits based at individual scale is of great significance for evaluating plant adaptability to climate change. Methods In this study, we evaluate how leaf functional traits of giant trees relate to spatial niche specialization along a vertical gradient. We sampled the tropical flagship species of Parashorea chinensis around 60 meters tall and divided their crowns into three vertical layers. Fourteen key leaf functional traits including leaf morphology, photosynthetic, hydraulic and chemical physiology were measured at each canopy layer to investigate the intraspecific variation of leaf traits and the interrelationships between different functional traits. Additionally, due to the potential impact of different measurement methods (in-situ and ex-situ branch) on photosynthetic physiological parameters, we also compared the effects of these two gas exchange measurements. Results and discussion In-situ measurements revealed that most leaf functional traits of individual-to-individual P. chinensis varied significantly at different canopy heights. Leaf hydraulic traits such as midday leaf water potential (MWP) and leaf osmotic potential (OP) were insignificantly correlated with leaf photosynthetic physiological traits such as maximal net assimilation rate per mass (A mass). In addition, great discrepancies were found between in-situ and ex-situ measurements of photosynthetic parameters. The ex-situ measurements caused a decrease by 53.63%, 27.86%, and 38.05% in A mass, and a decrease of 50.00%, 19.21%, and 27.90% in light saturation point compared to the in-situ measurements. These findings provided insights into our understanding of the response mechanisms of P. chinensis to micro-habitat in Xishuangbanna tropical seasonal rainforests and the fine scale adaption of different resultant of decoupled traits, which have implications for understanding ecological adaption strategies of P. chinensis under environmental changes.
Collapse
Affiliation(s)
- Nan Jin
- School of Ecology and Environment Science, Yunnan University, Kunming, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xiaocheng Yu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jinlong Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Mengcheng Duan
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Leiyun Feng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Rong Bai
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jianli Zhao
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Jia Song
- School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, China
| | - Gbadamassi Gouvide Olawole Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- National Forest Ecosystem Research Station at Xishuangbanna, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Xishuangbanna Forest Ecosystem Yunnan Field Scientific Observation Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
10
|
Shariatipour N, Shams Z, Heidari B, Richards C. Genetic variation and response to selection of photosynthetic and forage characteristics in Kentucky bluegrass ( Poa pratensis L.) ecotypes under drought conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1239860. [PMID: 38023869 PMCID: PMC10667697 DOI: 10.3389/fpls.2023.1239860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Introduction Evaluation of the effects of water-limited conditions on the photosynthetic characteristics and forage yield is important for enhancing the forage productivity and drought tolerance in Kentucky bluegrass (Poa pratensis L.). Methods In the present study, 100 P. pratensis ecotypes collected from different geographical areas in Iran were assessed under well-watered and drought stress conditions. Genetic variation and response to selection for the photosynthetic characteristics [i.e., net photosynthesis rate (A), stomatal conductance (gs), transpiration rate (Tr), chlorophyll content (Chl), and photochemical efficiency (Fv/Fm)] and forage yield [fresh forage yield (FY) and dry forage yield (Dy)] traits were analyzed during the 2018 and 2019 growing seasons. Results and discussion Drought stress had negative effects on evaluated photosynthesis parameters and significantly reduced dry and fresh forage yields. On average, FY with a 45% decrease and gs with a 326% decrease under drought stress conditions showed the highest reduction rate among forage yield and photosynthesis traits, respectively. Genotypic coefficients of variation (GCV) for FY were lower under drought stress. The estimates of heritability, genetic advance, and genetic advance as percentage of mean showed the predominance of additive gene action for the traits. Overall, the results showed that "Ciakhor", "Damavand", "Karvandan", "Basmenj", "Abr2", "Abrumand", "Borhan", "Hezarkanian", "LasemCheshmeh", "Torshab", and "DoSar" have higher forage yield production with little change between two irrigation regimes, which makes them promising candidates for developing high-yielding drought-tolerant varieties through breeding programs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Shams
- Department of Horticulture Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- United States Department of Agriculture, The Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
11
|
Song M, Hu N, Zhou S, Xie S, Yang J, Ma W, Teng Z, Liang W, Wang C, Bu M, Zhang S, Yang X, He D. Physiological and RNA-Seq Analyses on Exogenous Strigolactones Alleviating Drought by Improving Antioxidation and Photosynthesis in Wheat ( Triticum aestivum L.). Antioxidants (Basel) 2023; 12:1884. [PMID: 37891963 PMCID: PMC10604895 DOI: 10.3390/antiox12101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Drought poses a significant challenge to global wheat production, and the application of exogenous phytohormones offers a convenient approach to enhancing drought tolerance of wheat. However, little is known about the molecular mechanism by which strigolactones (SLs), newly discovered phytohormones, alleviate drought stress in wheat. Therefore, this study is aimed at elucidating the physiological and molecular mechanisms operating in wheat and gaining insights into the specific role of SLs in ameliorating responses to the stress. The results showed that SLs application upregulated the expression of genes associated with the antioxidant defense system (Fe/Mn-SOD, PER1, PER22, SPC4, CAT2, APX1, APX7, GSTU6, GST4, GOR, GRXC1, and GRXC15), chlorophyll biogenesis (CHLH, and CPX), light-harvesting chlorophyll A-B binding proteins (WHAB1.6, and LHC Ib-21), electron transfer (PNSL2), E3 ubiquitin-protein ligase (BB, CHIP, and RHY1A), heat stress transcription factor (HSFA1, HSFA4D, and HSFC2B), heat shock proteins (HSP23.2, HSP16.9A, HSP17.9A, HSP21, HSP70, HSP70-16, HSP70-17, HSP70-8, HSP90-5, and HSP90-6), DnaJ family members (ATJ1, ATJ3, and DJA6), as well as other chaperones (BAG1, CIP73, CIPB1, and CPN60I). but the expression level of genes involved in chlorophyll degradation (SGR, NOL, PPH, PAO, TIC55, and PTC52) as well as photorespiration (AGT2) was found to be downregulated by SLs priming. As a result, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, and chlorophyll content and photosynthetic rate were increased, which indicated the alleviation of drought stress in wheat. These findings demonstrated that SLs alleviate drought stress by promoting photosynthesis through enhancing chlorophyll levels, and by facilitating ROS scavenging through modulation of the antioxidant system. The study advances understandings of the molecular mechanism underlying SLs-mediated drought alleviation and provides valuable insights for implementing sustainable farming practice under water restriction.
Collapse
Affiliation(s)
- Miao Song
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Sumei Zhou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Songxin Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Jian Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenqi Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zhengkai Teng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenxian Liang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Chunyan Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Mingna Bu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Shuo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Xiwen Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Dexian He
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| |
Collapse
|
12
|
Parkash V, Snider JL, Pilon C, Bag S, Jespersen D, Virk G, Dhillon KK. Differential sensitivities of photosynthetic component processes govern oxidative stress levels and net assimilation rates in virus-infected cotton. PHOTOSYNTHESIS RESEARCH 2023; 158:41-56. [PMID: 37470938 DOI: 10.1007/s11120-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Cotton (Gossypium hirsutum L.) leafroll dwarf virus disease (CLRDD) is a yield-limiting threat to cotton production and can substantially limit net photosynthetic rates (AN). Previous research showed that AN was more sensitive to CLRDD-induced reductions in stomatal conductance than electron transport rate (ETR) through photosystem II (PSII). This observation coupled with leaf reddening symptomology led to the hypothesis that differential sensitivities of photosynthetic component processes to CLRDD would contribute to declines in AN and increases in oxidative stress, stimulating anthocyanin production. Thus, an experiment was conducted to define the relative sensitivity of photosynthetic component processes to CLRDD and to quantify oxidative stress and anthocyanin production in field-grown cotton. Among diffusional limitations to AN, reductions in mesophyll conductance and CO2 concentration in the chloroplast were the greatest constraints to AN under CLRDD. Multiple metabolic processes were also adversely impacted by CLRDD. ETR, RuBP regeneration, and carboxylation were important metabolic (non-diffusional) limitations to AN in symptomatic plants. Photorespiration and dark respiration were less sensitive than photosynthetic processes, contributing to declines in AN in symptomatic plants. Among thylakoid processes, reduction of PSI end electron acceptors was the most sensitive to CLRDD. Oxidative stress indicators (H2O2 production and membrane peroxidation) and anthocyanin contents were substantially higher in symptomatic plants, concomitant with reductions in carotenoid content and no change in energy dissipation by PSII. We conclude that differential sensitivities of photosynthetic processes to CLRDD and limited potential for energy dissipation at PSII increases oxidative stress, stimulating anthocyanin production as an antioxidative mechanism.
Collapse
Affiliation(s)
- Ved Parkash
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA.
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA
| | - Cristiane Pilon
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31794, USA
| | - David Jespersen
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Gurpreet Virk
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA
| | - Kamalpreet Kaur Dhillon
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, 31794, USA
| |
Collapse
|
13
|
Xu Y, Feng Z, Peng J, Uddling J. Variations in leaf anatomical characteristics drive the decrease of mesophyll conductance in poplar under elevated ozone. GLOBAL CHANGE BIOLOGY 2023; 29:2804-2823. [PMID: 36718962 DOI: 10.1111/gcb.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Decline in mesophyll conductance (gm ) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3 ). Leaf anatomical traits are known to influence gm , but the potential effects of O3 -induced changes in leaf anatomy on gm have not yet been clarified. Here, two poplar clones were exposed to elevated O3 . The effects of O3 on the photosynthetic capacity and anatomical characteristics were assessed to investigate the leaf anatomical properties that potentially affect gm . We also conducted global meta-analysis to explore the general response patterns of gm and leaf anatomy to O3 exposure. We found that the O3 -induced reduction in gm was critical in limiting leaf photosynthesis. Changes in liquid-phase conductance rather than gas-phase conductance drive the decline in gm under elevated O3, and this effect was associated with thicker cell walls and smaller chloroplast sizes. The effects of O3 on palisade and spongy mesophyll cell traits and their contributions to gm were highly genotype-dependent. Our results suggest that, while anatomical adjustments under elevated O3 may contribute to defense against O3 stress, they also cause declines in gm and photosynthesis. These results provide the first evidence of anatomical constraints on gm under elevated O3 .
Collapse
Affiliation(s)
- Yansen Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA),School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Wang S, Han Y, Jia Y, Chen Z, Wang G. Addressing the Relationship between Leaf Nitrogen and Carbon Isotope Discrimination from the Three Levels of Community, Population and Individual. PLANTS (BASEL, SWITZERLAND) 2023; 12:1551. [PMID: 37050177 PMCID: PMC10097192 DOI: 10.3390/plants12071551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The carbon, nitrogen and water cycles of terrestrial ecosystems are important biogeochemical cycles. Addressing the relationship of leaf nitrogen (N) and carbon isotope discrimination (Δ) will enhance the understanding of the links between these three cycles in plant leaves because Δ can reflect time-integrated leaf-level water-use efficiency (WUE) over the period when the leaf material is produced. Previous studies have paid considerable attention to the relationship. However, these studies have not effectively eliminated the interference of environmental factors, inter-species, and inter-individual differences in this relationship, so new research is necessary. To minimize these interferences, the present work explored the relationship at the three levels of community, population, and plant individual. Three patterns of positive, negative and no relationship were observed across communities, populations, and individuals, which is dependent on environmental conditions, species, and plant individuals. The results strongly suggested that there is no general pattern for the relationship between leaf N and Δ. Furthermore, the results indicated that there is often no coupling between leaf-level long-term WUE and leaf N in the metabolic process of carbon, N and water in leaves. The main reason for the lack of this relationship is that most plants do not invest large amounts of nitrogen into photosynthesis. In addition, the present study also observed that, for most plant species, leaf N was not related to photosynthetic rate, and that variations in photosynthetic rates are mainly driven by stomatal conductance.
Collapse
Affiliation(s)
- Shuhan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Department of Biotechonology, College of Biotechonology and Pharmceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaowen Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yufu Jia
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Zixun Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Nadal M, Clemente-Moreno MJ, Perera-Castro AV, Roig-Oliver M, Onoda Y, Gulías J, Flexas J. Incorporating pressure-volume traits into the leaf economics spectrum. Ecol Lett 2023; 26:549-562. [PMID: 36750322 DOI: 10.1111/ele.14176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/09/2023]
Abstract
In recent years, attempts have been made in linking pressure-volume parameters and the leaf economics spectrum to expand our knowledge of the interrelationships among leaf traits. We provide theoretical and empirical evidence for the coordination of the turgor loss point and associated traits with net CO2 assimilation (An ) and leaf mass per area (LMA). We measured gas exchange, pressure-volume curves and leaf structure in 45 ferns and angiosperms, and explored the anatomical and chemical basis of the key traits. We propose that the coordination observed between mass-based An , capacitance and the turgor loss point (πtlp ) emerges from their shared link with leaf density (one of the components of LMA) and, specially, leaf saturated water content (LSWC), which in turn relates to cell size and nitrogen and carbon content. Thus, considering the components of LMA and LSWC in ecophysiological studies can provide a broader perspective on leaf structure and function.
Collapse
Affiliation(s)
- Miquel Nadal
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| |
Collapse
|
16
|
Zaheer M, Zafar ZU, Athar HUR, Bano H, Amir M, Khalid A, Manzoor H, Javed M, Iqbal M, Ogbaga CC, Qureshi MK. Mixing tannery effluent had fertilizing effect on growth, nutrient accumulation, and photosynthetic capacity of some cucurbitaceous vegetables: A little help from foe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28947-28960. [PMID: 36401694 DOI: 10.1007/s11356-022-24247-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Tannery effluent contains a number of organic and inorganic elements as pollutants which reduce plant growth. To overcome shortage of water, use of diluted industrial wastewater such as tannery effluent can be a viable strategy for improving crop growth and yield. A pot experiment was conducted to determine the effects of tannery effluent and its various dilutions on physiological and biochemical characteristics of five cucurbitaceous vegetables. Tannery effluent was applied 0, 25, 50, 75 and 100% to 3-week-old plants of five cucurbitaceous vegetables (Cucurbita maxima, Luffa cylindrica, Citrullus vulgaris, Cucumis melo, and Praecitrullus fistulosus) for 4 weeks. Tannery effluent reduced the growth of all five cucrbitaceous vegetables. Diluted tannery effluent (25%) improved the growth of Cucurbita maxima, Citrullus vulgaris, and Cucumis melo. Moderately diluted (50%) did not affect the growth of Citrullus vulgaris and Cucumis melo. Toxic effects of tannery effluent were associated with high accumulation of heavy metals Cr, Cd, Mn, and Fe in leaves and roots. High accumulation of heavy metals in leaves reduced the accumulation of nutrients in leaves (N, P, K) and reduced photosynthetic pigments and photosynthetic rate. Changes in photosynthetic rates of all vegetable species due to tannery effluent were not associated with stomatal limitations (stomatal conductance, transpiration rate, internal CO2). Toxic effects of tannery effluent on plants also include changes in N-metabolism (amino acid and protein). However, extent of these adverse effects of tannery effluent on vegetables was species specific. It is suggested that Cucurbita maxima can be grown by supplying 25% tannery effluent, whereas Citrullus vulgaris and Cucumis melo can be grown with moderately diluted (50%) tannery effluent.
Collapse
Affiliation(s)
- Muhammad Zaheer
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Zafar Ullah Zafar
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan.
| | | | - Hussan Bano
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
- Department of Botany, The Women University, Multan, Pakistan
| | - Misbah Amir
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Ayesha Khalid
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Javed
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Iqbal
- Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan
- Department of Botany, University of Okara, Okara, Pakistan
| | - Chukwuma C Ogbaga
- Department of Biological Sciences, Nile University of Nigeria, Airport Road, Abuja, Nigeria
| | - Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
17
|
Roig‐Oliver M, Fullana‐Pericàs M, Bota J, Flexas J. Genotype-dependent changes of cell wall composition influence physiological traits of a long and a non-long shelf-life tomato genotypes under distinct water regimes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1396-1412. [PMID: 36310415 PMCID: PMC10098506 DOI: 10.1111/tpj.16018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Water shortage strongly affects plants' physiological performance. Since tomato (Solanum lycopersicum) non-long shelf-life (nLSL) and long shelf-life (LSL) genotypes differently face water deprivation, we subjected a nLSL and a LSL genotype to four treatments: control (well watering), short-term water deficit stress at 40% field capacity (FC) (ST 40% FC), short-term water deficit stress at 30% FC (ST 30% FC), and short-term water deficit stress at 30% FC followed by recovery (ST 30% FC-Rec). Treatments promoted genotype-dependent elastic adjustments accompanied by distinct photosynthetic responses. While the nLSL genotype largely modified mesophyll conductance (gm ) across treatments, it was kept within a narrow range in the LSL genotype. However, similar gm values were achieved under ST 30% FC conditions. Particularly, modifications in the relative abundance of cell wall components and in sub-cellular anatomic parameters such as the chloroplast surface area exposed to intercellular air space per leaf area (Sc /S) and the cell wall thickness (Tcw ) regulated gm in the LSL genotype. Instead, only changes in foliar structure at the supra-cellular level influenced gm in the nLSL genotype. Even though further experiments testing a larger range of genotypes and treatments would be valuable to support our conclusions, we show that even genotypes of the same species can present different elastic, anatomical, and cell wall composition-mediated mechanisms to regulate gm when subjected to distinct water regimes.
Collapse
Affiliation(s)
- Margalida Roig‐Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Departament de BiologiaUniversitat de les Illes Balears (UIB) – Agro‐Environmental and Water Economics Institute (INAGEA)Carretera de Valldemossa Km 7.507122PalmaIlles BalearsSpain
| | - Mateu Fullana‐Pericàs
- Research Group on Plant Biology under Mediterranean Conditions, Departament de BiologiaUniversitat de les Illes Balears (UIB) – Agro‐Environmental and Water Economics Institute (INAGEA)Carretera de Valldemossa Km 7.507122PalmaIlles BalearsSpain
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Departament de BiologiaUniversitat de les Illes Balears (UIB) – Agro‐Environmental and Water Economics Institute (INAGEA)Carretera de Valldemossa Km 7.507122PalmaIlles BalearsSpain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de BiologiaUniversitat de les Illes Balears (UIB) – Agro‐Environmental and Water Economics Institute (INAGEA)Carretera de Valldemossa Km 7.507122PalmaIlles BalearsSpain
- King Abdulaziz UniversityP.O. Box 80200Jeddah21589Saudi Arabia
| |
Collapse
|
18
|
Zou J, Hu W, Li Y, Zhu H, He J, Wang Y, Meng Y, Chen B, Zhao W, Wang S, Zhou Z. Leaf anatomical alterations reduce cotton's mesophyll conductance under dynamic drought stress conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:391-405. [PMID: 35506315 DOI: 10.1111/tpj.15794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Drought stress significantly affects cotton's net photosynthetic rate (A) by restraining stomatal (gs ) and mesophyll conductance (gm ) as well as perturbing its biochemical process, resulting in yield reductions. Despite the significant progress in dissecting effects of drought on photosynthesis, the variability observed in cotton's gm , and the mechanisms contributing to that variability under dynamic drought stress conditions are poorly understood. For that reason, a controlled-environment experiment with two cotton genotypes (Dexiamian 1, Yuzaomian 9110), three water levels (soil relative water content: control [75 ± 5]%, moderate drought [60 ± 5]%, severe drought [45 ± 5]%), and two drought durations (10 and 31 days) were conducted. The results indicated that the cotton boll biomass was significantly decreased under 10-day severe drought and 31-day moderate and severe drought. Decreases in gs were later accompanied by decreases in gm and further combined with reductions in electron transport rate, as drought stress progressed in duration and severity, ultimately resulting in significant reductions in A of subtending leaf. Stomatal and mesophyll conductance constraints were the primary factors limiting photosynthesis, while biochemical constraints decreased, as drought stress progressed. Considering gm , its decline was ascribed to increases in the diffusion resistance of CO2 through cytoplasm (rcyt ), under short- or long-term drought, as well as to increases in leaf dry mass (LMA), and decreases in the chloroplast surface area exposed to intercellular air space (Sc /S), under long-term drought. It was concluded that A could be enhanced, under dynamic drought stress conditions, by increasing gm through increasing Sc /S and reducing LMA and rcyt .
Collapse
Affiliation(s)
- Jie Zou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yuxia Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Honghai Zhu
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jiaqi He
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Youhua Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yali Meng
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Wenqing Zhao
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| |
Collapse
|
19
|
Fradera-Soler M, Grace OM, Jørgensen B, Mravec J. Elastic and collapsible: current understanding of cell walls in succulent plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2290-2307. [PMID: 35167681 PMCID: PMC9015807 DOI: 10.1093/jxb/erac054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/11/2022] [Indexed: 05/11/2023]
Abstract
Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Correspondence: or
| | | | | | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Correspondence: or
| |
Collapse
|