1
|
Choudhary D, Deshmukh S, Maheswari G, Kumari A, Ghormade V. Silica and mesoporous silica nanoparticles display effective insecticidal effect and augment plant defense responses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106389. [PMID: 40262892 DOI: 10.1016/j.pestbp.2025.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/22/2025] [Indexed: 04/24/2025]
Abstract
The polyphagous insect pest, Spodoptera litura displays insecticide resistance that requires new control tactics. In this context, inorganic silica nanoparticles (SiNPs) and mesoporous silica nanoparticles (MSNPs) were studied for their insecticidal activity and their effects on the plant defense responses. The synthesized silica (SiNPs,160 nm size) and mesoporous silica (MSNPs,100 nm size) nanoparticles showed high insecticidal effect of against S. litura larvae with 73.0 and 80.0 % mortalities, respectively at low nanoparticles concentration (1 μg). Administration of NPs by feeding enhanced the larval gut uptake and caused a significant ∼14.9- to 12.7-fold reduction in lactate dehydrogenase activity for SiNPs and MSNPs, respectively. Efficient uptake of fluorescent NPs was illustrated in columnar larval gut cells. Feeding of SiNPs and MSNPs led to a significant reduction in larval weight (2.9- and 3.4-fold, respectively) due to their antifeedant effect which was positively correlated to larval mortalities. Both NPs exhibited negligible cytotoxicity in vitro. Furthermore, application of rhodamine B fluorescence-tagged NPs on soyabean leaves showed NPs presence on the leaf surfaces and were not internalized by the leaf. Moreover, the electromechanical plant responses to NPs application displayed increased localized signal durations (>2-fold). Additionally, SiNPs and MSNPs treatments significantly upregulated the 12-oxophytodienoate reductase plant jasmonic acid defense pathway gene expression (2.7- and 1.4-fold, respectively) that led to enhanced jasmonic acid contents. Application of SiNPs and MSNPs at low concentrations achieved insecticidal effect against S. litura and enhanced the plant defense responses against pest. Silica nanoparticles have potential in safe and effective management of S. litura.
Collapse
Affiliation(s)
- Deepali Choudhary
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Sneha Deshmukh
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - G Maheswari
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Archana Kumari
- Gujarat Biotechnology University, Gandhinagar 382355, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| |
Collapse
|
2
|
Liu L, Sun Z, Tang R, Shi JH, Zhang LQ, Abdelnabby H, Zhang A, Wang MQ. Suprathreshold Water Spray Stimulus Enhances Plant Defenses against Biotic Stresses in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20483-20495. [PMID: 39248366 DOI: 10.1021/acs.jafc.4c05131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Mechanical stimuli can affect plant growth, development, and defenses. The role of water spray stimulation, as a prevalent mechanical stimulus in the environment, in crop growth and defense cannot be overlooked. In this study, the effects of water spray on tomato plant growth and defense against the chewing herbivore Helicoverpa armigera and necrotrophic fungus Botrytis cinerea were investigated. Suprathreshold water spray stimulus (LS) was found to enhance tomato plant defenses against pests and pathogens while concurrently modifying plant architecture. The results of the phytohormone and chemical metabolite analysis revealed that LS improved the plant defense response via jasmonic acid (JA) signaling. LS significantly elevated the level of a pivotal defensive metabolite, chlorogenic acid, and reduced the emissions of volatile organic compounds (VOCs) from tomato plants, thereby defending against pest and pathogen attacks. The most obvious finding to emerge from this study is that LS enhances tomato plant defenses against biotic stresses, which will pave the way for further work on the application of mechanical stimuli for pest management.
Collapse
Affiliation(s)
- Le Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ze Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Rui Tang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jin-Hua Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Li-Qiong Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Hazem Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia 13736, Egypt
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA, ARS, Beltsville, Maryland 20705-2350, United States
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
3
|
Lavhale SG, Kondhare KR, Sinthadurai VS, Barvkar VT, Kale RS, Joshi RS, Giri AP. Ocimum kilimandscharicum 4CL11 negatively regulates adventitious root development via accumulation of flavonoid glycosides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:176-196. [PMID: 38575203 DOI: 10.1111/tpj.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
4-Coumarate-CoA Ligase (4CL) is an important enzyme in the phenylpropanoid biosynthesis pathway. Multiple 4CLs are identified in Ocimum species; however, their in planta functions remain enigmatic. In this study, we independently overexpressed three Ok4CL isoforms from Ocimum kilimandscharicum (Ok4CL7, -11, and -15) in Nicotiana benthamiana. Interestingly, Ok4CL11 overexpression (OE) caused a rootless or reduced root growth phenotype, whereas overexpression of Ok4CL15 produced normal adventitious root (AR) growth. Ok4CL11 overexpression in N. benthamiana resulted in upregulation of genes involved in flavonoid biosynthesis and associated glycosyltransferases accompanied by accumulation of specific flavonoid-glycosides (kaempferol-3-rhamnoside, kaempferol-3,7-O-bis-alpha-l-rhamnoside [K3,7R], and quercetin-3-O-rutinoside) that possibly reduced auxin levels in plants, and such effects were not seen for Ok4CL7 and -15. Docking analysis suggested that auxin transporters (PINs/LAXs) have higher binding affinity to these specific flavonoid-glycosides, and thus could disrupt auxin transport/signaling, which cumulatively resulted in a rootless phenotype. Reduced auxin levels, increased K3,7R in the middle and basal stem sections, and grafting experiments (intra and inter-species) indicated a disruption of auxin transport by K3,7R and its negative effect on AR development. Supplementation of flavonoids and the specific glycosides accumulated by Ok4CL11-OE to the wild-type N. benthamiana explants delayed the AR emergence and also inhibited AR growth. While overexpression of all three Ok4CLs increased lignin accumulation, flavonoids, and their specific glycosides were accumulated only in Ok4CL11-OE lines. In summary, our study reveals unique indirect function of Ok4CL11 to increase specific flavonoids and their glycosides, which are negative regulators of root growth, likely involved in inhibition of auxin transport and signaling.
Collapse
Affiliation(s)
- Santosh G Lavhale
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Veenothini S Sinthadurai
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rutuja S Kale
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rakesh S Joshi
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
4
|
Kallure GS, Sahoo SS, Kale RS, Barvkar VT, Kontham R, Giri AP. Aminoacylase efficiently hydrolyses fatty acid amino acid conjugates of Helicoverpa armigera potentially to increase the pool of glutamine. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104070. [PMID: 38176573 DOI: 10.1016/j.ibmb.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
One of the most prevalent bioactive molecules present in the oral secretion (OS) of lepidopteran insects is fatty acid amino acid conjugates (FACs). Insect dietary components have influence on the synthesis and retaining the pool of FACs in the OS. We noted differential and diet-specific accumulation of FACs in the OS of Helicoverpa armigera by using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Interestingly, we identified FACs hydrolyzing enzyme aminoacylase (HaACY) in the OS of H. armigera through proteomic analysis. Next, we have cloned, expressed, and purified active recombinant HaACY in the bacterial system. Recombinant HaACY hydrolyzes all the six identified FACs in the OS of H. armigera larvae fed on host and non-host plants and releases respective fatty acid and glutamine. In these six FACs, fatty acid moieties vary while amino acid glutamine was common. Glutamine obtained upon hydrolysis of FACs by HaACY might serve as an amino acid pool for insect growth and development. To understand the substrate choices of HaACY, we chemically synthesized, purified, and characterized all the six FACs. Interestingly, rHaACY also shows hydrolysis of synthetic FACs into respective fatty acid and glutamine. Our results underline the importance of diet on accumulation of FACs and role of aminoacylase(s) in regulating the level of FACs and glutamine.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Shubhranshu Shekhar Sahoo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Rutuja S Kale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Ravindar Kontham
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Lin DJ, Zhang YX, Fang Y, Gao SJ, Wang R, Wang JD. The effect of chlorogenic acid, a potential botanical insecticide, on gene transcription and protein expression of carboxylesterases in the armyworm (Mythimna separata). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105575. [PMID: 37666601 DOI: 10.1016/j.pestbp.2023.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Chlorogenic acid (CGA) is a potential botanical insecticide metabolite that naturally occurs in various plants. Our previous studies revealed CGA is sufficient to control the armyworm Mythimna separata. In this study, we conducted a proteomic analysis of saliva collected from M. separata following exposure to CGA and found that differentially expressed proteins (DEPs) treated with CGA for 6 h and 24 h were primarily enriched in glutathione metabolism and the pentose phosphate pathway. Notably, we observed six carboxylesterase (CarE) proteins that were enriched at both time points. Additionally, these corresponding genes were expressed at levels 5.05 to 130.25 times higher in our laboratory-selected resistance strains. We also noted a significant increase in the enzyme activity of carboxylesterase following treatments with varying CGA concentrations. Finally, we confirmed that knockdown of MsCarE14, MsCarE28, and MsCCE001h decreased the susceptibility to CGA in resistance strain, indicating three CarE genes play crucial roles in CGA detoxification. This study presents the first report on the salivary proteomics of M. separata, offering valuable insights into the role of salivary proteins. Moreover, the determination of CarE mediated susceptibility change to CGA provides new targets for agricultural pest control and highlights the potential insecticide resistance mechanism for pest resistance management.
Collapse
Affiliation(s)
- Dong-Jiang Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Xin Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Singh H, Grewal SK, Singh R, Bhardwaj RD. Induced defense responses in cultivated and wild chickpea genotypes against Helicoverpa armigera infestation. Biol Futur 2023:10.1007/s42977-022-00151-2. [PMID: 36609909 DOI: 10.1007/s42977-022-00151-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/30/2022] [Indexed: 01/08/2023]
Abstract
Five desi (GL 12,021, GL 29,095, GL 29,078, H11 22 and CSJ 515) and three wild (GLW 22, GLW 58 and GLW 187) chickpea cultivars showed induced defense response against Helicoverpa armigera infestation as a result of enhanced activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, polyphenol oxidase, phenylalanine ammonia lyase, tyrosine ammonia lyase in leaves, pod walls and seeds. Catalase activity increased in leaves of GL 12,021, H11 22, GL 29,095, CSJ 515, GLW 22, and GL 29,078 after infestation compared to resistant check; catalase and peroxidase activities in GL 29,095 and GL 29,078; ascorbate peroxidase and glutathione reductase activities in leaves of GLW 58. The increased activity of superoxide dismutase in pod wall of H1122; catalase in pod wall of 29,078, GL 29,095 and GL 22; ascorbate peroxidase and glutathione reductase in pod wall of GLW 58; phenylalanine ammonia lyase and tyrosine ammonia lyase in pod wall of GLW 187, H11 22, GL 20,978, GLW 22 and GLW 58 after infestation as compared to resistant check might be responsible for mitigating infestation induced oxidative stress. MDA content decreased in leaves, pod wall and seeds of GLW 187 and GL 12,021 after infestation. Lower percent pod damage (9.58-12.44%) in GL 12,021, GLW 187, GL 29,095, H11 22, GL 29,078, GLW 22 and GLW 58 as compared to resistant (16.18%) and susceptible (21.50) checks might be attributed to differential induced defense mechanism in them. The identified desi and wild genotypes might be used in breeding program to develop cultivars with improved resistance to herbivore.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biochemistry, Punjab Agricultural University, Punjab, India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Punjab, India.
| | - Ravinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Punjab, India
| |
Collapse
|