1
|
Wang J, Ren H, Zhu J, Li Y, Liu J, Li H, Liu C, Fan Y, Zhang H. Integrated analysis of lipid metabolism and differentially expressed genes reveal seed oil accumulation in field muskmelon. Genomics 2025; 117:111031. [PMID: 40118294 DOI: 10.1016/j.ygeno.2025.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Field muskmelon (Cucumis melo L. var. agrestis Naud.), a novel oil crop, contains a high amount of lipids in seeds. However, the high-resolution profiles and dynamic regulation of its lipids remain largely unknown. This study identified the lipids and analyzed their dynamic changes using UHPLC-MS/MS. We identified 2533 lipid molecules in the seeds, including 7 categories and 47 sub-classes, with the higher proportions of glycerolipids (41.02 %) and glycerophospholipids (28.11 %). Moreover, the content of glycerolipids was the highest, particularly for triacylglycerol lipid molecules. Additionally, the expression patterns of differentially expressed genes (DEGs) showed a close correlation with lipid accumulation, especially within the plant hormone signaling pathway. Notably, the sufficient supply of 18:1-CoA, coupled with a high expression level of CmFAD2, contributed significantly to the high linoleic acid (68.56 %) content in field muskmelon seeds. Our findings offer insights that could enhance the comprehensive understanding of lipids in field muskmelon, and facilitate the breeding of field muskmelon.
Collapse
Affiliation(s)
- Jiyuan Wang
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China.
| | - Hengyi Ren
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Jie Zhu
- Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yahui Li
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Jie Liu
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Hu Li
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Chun Liu
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China.
| | - Yupeng Fan
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Huijun Zhang
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China.
| |
Collapse
|
2
|
Hao Q, Li T, Lu G, Wang S, Li Z, Gu C, Kong F, Shu Q, Li Y. Chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 maintain petal greenness in Paeonia suffruticosa 'Lv Mu Yin Yu'. J Adv Res 2024:S2090-1232(24)00388-6. [PMID: 39236974 DOI: 10.1016/j.jare.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION Green flowers are not an adaptive trait in natural plants due to the challenge for pollinators to discriminate from leaves, but they are valuable in horticulture. The molecular mechanisms of green petals remain unclear. Tree peony (Paeonia suffruticosa) is a globally cultivated ornamental plant and considered the 'King of Flowers' in China. The P. suffruticosa 'Lv Mu Yin Yu (LMYY)' cultivar with green petals could be utilized as a representative model for understanding petal-specific chlorophyll (Chl) accumulation and color formation. OBJECTIVES Identify the key genes related to Chl metabolism and understand the molecular mechanism of petal color changes. METHODS The petal color parameter was analyzed at five developmental stages using a Chroma Spectrophotometer, and Chl and anthocyanin accumulation patterns were examined. Based on comparative transcriptomes, differentially expressed genes (DEGs) were identified, among which three were functionally characterized through overexpression in tobacco plants or silencing in 'LMYY' petals. RESULTS During flower development and blooming, flower color changed from green to pale pink, consistent with the Chl and anthocyanin levels. The level of Chl demonstrated a similar pattern with petal epidermal cell striation density. The DEGs responsible for Chl and anthocyanin metabolism were characterized through a comparative transcriptome analysis of flower petals over three critical developmental stages. The key chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 influenced the Chl accumulation and the greenness of 'LMYY' petals. CONCLUSION PsCLH1, PsLhcb1, and PsLhcb5 were critical in accumulating the Chl and maintaining the petal greenness. Flower color changes from green to pale pink were regulated by the homeostasis of Chl degradation and anthocyanin biosynthesis. This study offers insights into underlying molecular mechanisms in the green petal and a strategy for germplasm innovation.
Collapse
Affiliation(s)
- Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tongtong Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Gaojie Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuo Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Zhen Li
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Cancan Gu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fan Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
3
|
Yang W, Xin Z, Zhang Q, Zhang Y, Niu L. The tree peony DREB transcription factor PrDREB2D regulates seed α-linolenic acid accumulation. PLANT PHYSIOLOGY 2024; 195:745-761. [PMID: 38365221 DOI: 10.1093/plphys/kiae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
α-Linolenic acid (ALA), an essential fatty acid (FA) for human health, serves as the precursor of 2 nutritional benefits, docosahexaenoic acid and eicosapentaenoic acid, and can only be obtained from plant foods. We previously found that phospholipid:diacylglycerol acyltransferase 2 (PrPDAT2) derived from ALA-rich tree peony (Paeonia rockii) can promote seed ALA accumulation. However, the regulatory mechanism underlying its promoting effect on ALA accumulation remains unknown. Here, we revealed a tree peony dehydration-responsive element binding transcription factor, PrDREB2D, as an upstream regulator of PrPDAT2, which is involved in regulating seed ALA accumulation. Our findings demonstrated that PrDREB2D serves as a nucleus-localized transcriptional activator that directly activates PrPDAT2 expression. PrDREB2D altered the FA composition in transient overexpression Nicotiana benthamiana leaves and stable transgenic Arabidopsis (Arabidopsis thaliana) seeds. Repressing PrDREB2D expression in P. rockii resulted in decreased PrPDAT2 expression and ALA accumulation. In addition, PrDREB2D strengthened its regulation of ALA accumulation by recruiting the cofactor ABA-response element binding factor PrABF2b. Collectively, the study findings provide insights into the mechanism of seed ALA accumulation and avenues for enhancing ALA yield via biotechnological manipulation.
Collapse
Affiliation(s)
- Weizong Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| | - Ziwei Xin
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| | - Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| |
Collapse
|
4
|
Li Y, Kong F, Wu S, Song W, Shao Y, Kang M, Chen T, Peng L, Shu Q. Integrated analysis of metabolome, transcriptome, and bioclimatic factors of Acer truncatum seeds reveals key candidate genes related to unsaturated fatty acid biosynthesis, and potentially optimal production area. BMC PLANT BIOLOGY 2024; 24:284. [PMID: 38627650 PMCID: PMC11020666 DOI: 10.1186/s12870-024-04936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 β-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Fan Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shangwei Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjin Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Hunan Agricultural University, Changsha, 410128, China
| | - Tiantian Chen
- Taishan Academy of Forestry Sciences, Tai'an, 271002, China
| | - Liping Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Peng L, Li Y, Tan W, Wu S, Hao Q, Tong N, Wang Z, Liu Z, Shu Q. Combined genome-wide association studies and expression quantitative trait locus analysis uncovers a genetic regulatory network of floral organ number in a tree peony ( Paeonia suffruticosa Andrews) breeding population. HORTICULTURE RESEARCH 2023; 10:uhad110. [PMID: 37577399 PMCID: PMC10419549 DOI: 10.1093/hr/uhad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Great progress has been made in our understanding of floral organ identity determination and its regulatory network in many species; however, the quantitative genetic basis of floral organ number variation is far less well understood for species-specific traits from the perspective of population variation. Here, using a tree peony (Paeonia suffruticosa Andrews, Paeoniaceae) cultivar population as a model, the phenotypic polymorphism and genetic variation based on genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) analysis were analyzed. Based on 24 phenotypic traits of 271 representative cultivars, the transcript profiles of 119 cultivars were obtained, which indicated abundant genetic variation in tree peony. In total, 86 GWAS-related cis-eQTLs and 3188 trans-eQTL gene pairs were found to be associated with the numbers of petals, stamens, and carpels. In addition, 19 floral organ number-related hub genes with 121 cis-eQTLs were obtained by weighted gene co-expression network analysis, among which five hub genes belonging to the ABCE genes of the MADS-box family and their spatial-temporal co-expression and regulatory network were constructed. These results not only help our understanding of the genetic basis of floral organ number variation during domestication, but also pave the way to studying the quantitative genetics and evolution of flower organ number and their regulatory network within populations.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yang Li
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wanqing Tan
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangwei Wu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Tong
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhanying Wang
- Peony Research Institute, Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471000, China
| | - Zheng’an Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li Y, Kong F, Liu Z, Peng L, Shu Q. PhUGT78A22, a novel glycosyltransferase in Paeonia 'He Xie', can catalyze the transfer of glucose to glucosylated anthocyanins during petal blotch formation. BMC PLANT BIOLOGY 2022; 22:405. [PMID: 35982415 PMCID: PMC9386992 DOI: 10.1186/s12870-022-03777-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Flower color patterns play an important role in the evolution and subsequent diversification of flowers by attracting animal pollinators. This interaction can drive the diversity observed in angiosperms today in many plant families such as Liliaceae, Paeoniaceae, and Orchidaceae, and increased their ornamental values. However, the molecular mechanism underlying the differential distribution of anthocyanins within petals remains unclear in Paeonia. RESULTS In this study, we used an intersectional hybrid between the section Moutan and Paeonia, hereafter named Paeonia 'He Xie', which has purple flowers with dark purple blotches. After Ultra-high performance liquid chromatography-diode array detector (UPLC-DAD) analysis of blotched and non-blotched parts of petals, we found the anthocyanin content in the blotched part was always higher than that in the non-blotched part. Four kinds of anthocyanins, namely cyanidin-3-O-glucoside (Cy3G), cyanidin-3,5-O-glucoside (Cy3G5G), peonidin-3-O-glucoside (Pn3G), and peonidin-3,5-O-glucoside (Pn3G5G) were detected in the blotched parts, while only Cy3G5G and Pn3G5G were detected in the non-blotched parts. This suggests that glucosyltransferases may play a vital role in the four kinds of glucosylated anthocyanins in the blotched parts. Moreover, 2433 differentially expressed genes (DEGs) were obtained from transcriptome analysis of blotched and non-blotched parts, and a key UDP-glycosyltransferase named PhUGT78A22 was identified, which could use Cy3G and Pn3G as substrates to produce Cy3G5G and Pn3G5G, respectively, in vitro. Furthermore, silencing of PhUGT78A22 reduced the content of anthocyanidin 3,5-O-diglucoside in P. 'He Xie'. CONCLUSIONS A UDP-glycosyltransferase, PhUGT78A22, was identified in P. 'He Xie', and the molecular mechanism underlying differential distribution of anthocyanins within petals was elucidated. This study provides new insights on the biosynthesis of different kinds of anthocyanins within colorful petals, and helps to explain petal blotch formation, which will facilitate the cultivar breeding with respect to increasing ornamental value. Additionally, it provides a reference for understanding the molecular mechanisms responsible for precise regulation of anthocyanin biosynthesis and distribution patterns.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Fan Kong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng'an Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Liping Peng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
7
|
Wang Q, Liu Y, Wu X, Wang L, Li J, Wan M, Jia B, Ye Z, Liu L, Tang X, Tao S, Zhu L, Heng W. MYB1R1 and MYC2 Regulate ω-3 Fatty Acid Desaturase Involved in ABA-Mediated Suberization in the Russet Skin of a Mutant of 'Dangshansuli' ( Pyrus bretschneideri Rehd.). FRONTIERS IN PLANT SCIENCE 2022; 13:910938. [PMID: 35755695 PMCID: PMC9225576 DOI: 10.3389/fpls.2022.910938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
Russeting, a disorder of pear fruit skin, is mainly caused by suberin accumulation on the inner part of the outer epidermal cell layers. ABA was identified as a crucial phytohormone in suberification. Here, we demonstrated that the ABA content in russet pear skin was higher than in green skin. Then, ABA was applied to explore the changes in phenotype and suberin composition coupled with RNA-Seq and metabolomics to investigate the probably regulatory pathway of ABA-mediated suberification. The results showed that ABA treatment increased the expression of ω-3 fatty acid desaturase (FAD) and the content of α-linolenic acid. We identified 17 PbFADs in white pear, and the expression of PbFAD3a was induced by ABA. In addition, the role of PbFAD3a in promoting suberification has been demonstrated by overexpression in Arabidopsis and VIGS assays in the fruitlets. GUS staining indicated that the promoter of PbFAD3a was activated by ABA. Furthermore, MYC2 and MYB1R1 have been shown to bind to the PbFAD3a promoter directly and this was induced by ABA via yeast one-hybrid (Y1H) screening and qRT-PCR. In summary, our study found that ABA induces the expression of MYC2 and MYB1R1 and activates the PbFAD3a promoter, contributing to the formation of russet pear skin. Functional identification of key transcription factors will be the goal of future research. These findings reveal the molecular mechanism of ABA-mediated suberization in the russet skin and provide a good foundation for future studies on the formation of russet skin.
Collapse
Affiliation(s)
- Qi Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jinchao Li
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Bin Jia
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zhenfeng Ye
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwu Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Yan J, Xu X, Liu L, Song S, Kuang H, Xu C, Wu X. Development of a gold-based lateral flow immunoassay for the determination of abscisic acid. NEW J CHEM 2022. [DOI: 10.1039/d2nj03378j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The visual cut-off values of the LFIA strip for abscisic acid in food samples were 5 ng mL−1 as observed by the naked eye.
Collapse
Affiliation(s)
- Jieyu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|