1
|
Zhang Y, Cai H, You E, Qiao X, Gao Z, Chen G. Physiological response to low-nitrogen stress and comprehensive evaluation in four rice varieties. PHOTOSYNTHETICA 2024; 62:252-262. [PMID: 39649354 PMCID: PMC11622558 DOI: 10.32615/ps.2024.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 12/10/2024]
Abstract
Rice (Oryza sativa L.) research has rarely focused on the response to low-nitrogen stress in different subtypes previously and lacked a low-nitrogen tolerance evaluation system. Here, we investigated the physiological characteristics under moderate and low-nitrogen stress conditions in two japonica cultivars (NG46 and NG9108) and two indica cultivars (LYP9 and 9311). Using subordinate function analysis and principal component analysis, the low-nitrogen tolerance of four rice varieties was comprehensively evaluated; stomatal conductance, total carotenoid content, and nitrate reductase NR activity were taken as the low-nitrogen tolerance evaluation system. Among the four rice cultivars, NG46 and LYP9 had significant advantages in photosynthetic gas-exchange capacity, optimizing the balance between light-harvesting capacity, the ratio of reaction center inactivation, the magnitude of decrease in heat dissipation, and nitrogen-metabolism enzyme activities. The results investigated the physiological mechanisms of rice adaptation to low-nitrogen stress and offered a reliable method for assessing low-nitrogen tolerance in rice.
Collapse
Affiliation(s)
- Y.F. Zhang
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - H. Cai
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - E.T. You
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - X.Q. Qiao
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - Z.P. Gao
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| | - G.X. Chen
- College of Life Sciences, Nanjing Normal University, 210023 Nanjing, China
| |
Collapse
|
2
|
Liu J, Li J, Deng C, Liu Z, Yin K, Zhang Y, Zhao Z, Zhao R, Zhao N, Zhou X, Chen S. Effect of NaCl on ammonium and nitrate uptake and transport in salt-tolerant and salt-sensitive poplars. TREE PHYSIOLOGY 2024; 44:tpae020. [PMID: 38366380 DOI: 10.1093/treephys/tpae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Chen Deng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| |
Collapse
|
3
|
Sun J, Jin L, Li R, Meng X, Jin N, Wang S, Xu Z, Liu Z, Lyu J, Yu J. Effects of Different Forms and Proportions of Nitrogen on the Growth, Photosynthetic Characteristics, and Carbon and Nitrogen Metabolism in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:4175. [PMID: 38140502 PMCID: PMC10748299 DOI: 10.3390/plants12244175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. This study investigated optimal nitrogen forms and ratios for tomato growth using the 'Jingfan 502' tomato variety. Thirteen treatments were applied with varying proportions of nitrate nitrogen (NN), ammonium nitrogen (AN), and urea nitrogen (UN). Results revealed that the combination of AN and UN inhibited tomato growth and photosynthetic capacity. Conversely, the joint application of NN and UN or NN and AN led to a significant enhancement in tomato plant growth. Notably, the T12 (75%UN:25%NN) and T4 (75%NN:25%AN) treatments significantly increased the gas exchange and chlorophyll fluorescence parameters, thereby promoting the accumulation of photosynthetic products. The contents of fructose, glucose, and sucrose were significantly increased by 121.07%, 206.26%, and 94.64% and by 104.39%, 156.42%, and 61.40%, respectively, compared with those in the control. Additionally, AN favored starch accumulation, while NN and UN favored fructose, sucrose, and glucose accumulation. Gene expression related to nitrogen and sugar metabolism increased significantly in T12 and T4, with T12 showing greater upregulation. Key enzyme activity in metabolism also increased notably. In summary, T12 enhanced tomato growth by upregulating gene expression, increasing enzyme activity, and boosting photosynthesis and sugar accumulation. Growers should consider using NN and UN to reduce AN application in tomato fertilization.
Collapse
Affiliation(s)
- Jianhong Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Zitong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Jinhua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (R.L.); (X.M.); (N.J.); (Z.X.); (Z.L.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| |
Collapse
|
4
|
Ma D, Teng W, Yi B, Lin Y, Pan Y, Wang L. Effects of the nitrate and ammonium ratio on plant characteristics and Erythropalum scandens Bl. substrates. PLoS One 2023; 18:e0289659. [PMID: 37540657 PMCID: PMC10403090 DOI: 10.1371/journal.pone.0289659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023] Open
Abstract
Erythropalum scandens Bl. is a woody vegetable with high nitrogen demand that inhabits southern China. Ammonium and nitrate are the two main forms of inorganic nitrogen that plants directly absorb. A pot experiment was performed to determine the growth, physiological responses, and preferences of 12-month-old E. scandens seedlings for ammonium and nitrate. Aboveground and underground growth indexes, biomass, physiological and biochemical indexes (chlorophyll [Chl], soluble sugar, soluble protein and free proline contents), and substrate pH and nitrogen contents were determined under different nitrate and ammonium ratios (0 NO3-: 100 NH4+, 25 NO3-: 75 NH4+, 50 NO3-: 50 NH4+, 75 NO3-: 25 NH4+, and 100 NO3-: 0 NH4+), and the control (0 NO3-: 0 NH4+). The results showed that ammonium and nitrate improved the growth and physiological status of E. scandens seedlings in most of the treatments compared to the control. The aboveground growth status and biomass accumulation of E. scandens seedlings were significantly better under the 0 NO3-: 100 NH4+ treatment during fertilization compared with all other treatments. However, the growth status of the underground parts was not significantly different among treatments. Significant differences in osmoregulator content, except for soluble sugars, and Chl content were observed. Soluble sugars and soluble proteins were highest under the 0 NO3-: 100 NH4+ treatment at the end of fertilization (day 175). However, free proline accumulated during fertilization and the increase in NO3- indicated that excessive use of NO3- had a negative effect on the E. scandens seedlings. The order of accumulating nitrogen content was leaves > roots > stems. The highest N accumulation occurred in the aboveground parts under the 0 NO3-: 100 NH4+ treatment, whereas the highest N accumulation occurred in the underground parts under the 50 NO3-: 50 NH4+ treatment. Substrate pH increased at the end of fertilization (day 175) compared with the middle stage (day 75), while total nitrogen, ammonium, and nitrate were highly significantly different among the treatments. Total nitrogen and NH4+ content were the highest under the 0 NO3-: 100 NH4+ treatment, while NO3- content was the highest under the 100 NO3-: 0 NH4+ treatment. In conclusion, 12-month-old E. scandens seedlings grew best, and had better physiological conditions in NH4+ than NO3-. The 0 NO3-:100 NH4+ treatment (ammonium chloride 3.82 g/plant) resulted in the best growth and physiological conditions. Most of the growth and physiological indexes were inhibited with the increase in nitrate.
Collapse
Affiliation(s)
- Daocheng Ma
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Weichao Teng
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Biao Yi
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Yongzhi Lin
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Yuanyuan Pan
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Linghui Wang
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| |
Collapse
|
5
|
Chatzigianni M, Savvas D, Papadopoulou EA, Aliferis KA, Ntatsi G. Combined Effect of Salt Stress and Nitrogen Level on the Primary Metabolism of Two Contrasting Hydroponically Grown Cichorium spinosum L. Ecotypes. Biomolecules 2023; 13:biom13040607. [PMID: 37189356 DOI: 10.3390/biom13040607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Stamnagathi (Cichorium spinosum L.) is an indigenous plant species well-known for its health-promoting properties. Salinity is a long-term issue with devastating consequences on land and farmers. Nitrogen (N) constitutes a crucial element for plant growth and development (chlorophyll, primary metabolites, etc.). Thus, it is of paramount importance to investigate the impact of salinity and N supply on plants’ metabolism. Within this context, a study was conducted aiming to assess the impact of salinity and N stress on the primary metabolism of two contrasting ecotypes of stamnagathi (montane and seaside). Both ecotypes were exposed to three different salinity levels (0.3 mM—non-saline treatment, 20 mM—medium, and 40 mM—high salinity level) combined with two different total-N supply levels: a low-N at 4 mM and a high-N at 16 mM, respectively. The differences between the two ecotypes revealed the variable responses of the plant under the applied treatments. Fluctuations were observed at the level of TCA cycle intermediates (fumarate, malate, and succinate) of the montane ecotype, while the seaside ecotype was not affected. In addition, the results showed that proline (Pro) levels increased in both ecotypes grown under a low N-supply and high salt stress, while other osmoprotectant metabolites such as γ-aminobutyric acid (GABA) exhibited variable responses under the different N supply levels. Fatty acids such as α-linolenate and linoleate also displayed variable fluctuations following plant treatments. The carbohydrate content of the plants, as indicated by the levels of glucose, fructose, α,α-trehalose, and myo-inositol, was significantly affected by the applied treatments. These findings suggest that the different adaptation mechanisms among the two contrasting ecotypes could be strongly correlated with the observed changes in their primary metabolism. This study also suggests that the seaside ecotype may have developed unique adaptation mechanisms to cope with high N supply and salinity stress, making it a promising candidate for future breeding programs aimed at developing stress tolerant varieties of C. spinosum L.
Collapse
|
6
|
Duan Y, Yang H, Yang H, Wei Z, Che J, Wu W, Lyu L, Li W. Physiological and Morphological Responses of Blackberry Seedlings to Different Nitrogen Forms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1480. [PMID: 37050106 PMCID: PMC10097381 DOI: 10.3390/plants12071480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Blackberries are an emerging third-generation fruit that are popular in Europe, and specific nitrogen (N) supply is an important factor affecting their growth and development. To study the optimal N fertilizer for blackberry seedlings, no N (CK), nitrate (NO3-)-N, ammonium (NH4+)-N and urea were applied to one-year-old 'Ningzhi 4' blackberry plants at a key growth period (from May to August) to explore the effects of different N forms on the physiological characteristics. Correlation and principal component analysis were used to determine the relationships between various indexes. Ammonium (NH4+) or urea-fed plants had a better growth state, showed a greater plant height, biomass, SPAD values and enhanced antioxidant enzyme activities and photosynthesis. In addition, NH4+ was beneficial to the accumulation of sugars and amino acids in leaves and roots, and promoted the transport of auxin and cytokinin to leaves. NO3- significantly inhibited root growth and increased the contents of active oxygen, malondialdehyde and antioxidants in roots. Correlation and principal component analysis showed that growth and dry matter accumulation were closely related to the antioxidant system, photosynthetic characteristics, amino acids and hormone content. Our study provides a new idea for N regulation mechanism of blackberry and proposes a scientific fertilization strategy.
Collapse
Affiliation(s)
- Yongkang Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Haiyan Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Zhiwen Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| |
Collapse
|
7
|
Nazir F, Mahajan M, Khatoon S, Albaqami M, Ashfaque F, Chhillar H, Chopra P, Khan MIR. Sustaining nitrogen dynamics: A critical aspect for improving salt tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1087946. [PMID: 36909406 PMCID: PMC9996754 DOI: 10.3389/fpls.2023.1087946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In the current changing environment, salt stress has become a major concern for plant growth and food production worldwide. Understanding the mechanisms of how plants function in saline environments is critical for initiating efforts to mitigate the detrimental effects of salt stress. Agricultural productivity is linked to nutrient availability, and it is expected that the judicious metabolism of mineral nutrients has a positive impact on alleviating salt-induced losses in crop plants. Nitrogen (N) is a macronutrient that contributes significantly to sustainable agriculture by maintaining productivity and plant growth in both optimal and stressful environments. Significant progress has been made in comprehending the fundamental physiological and molecular mechanisms associated with N-mediated plant responses to salt stress. This review provided an (a) overview of N-sensing, transportation, and assimilation in plants; (b) assess the salt stress-mediated regulation of N dynamics and nitrogen use- efficiency; (c) critically appraise the role of N in plants exposed to salt stress. Furthermore, the existing but less explored crosstalk between N and phytohormones has been discussed that may be utilized to gain a better understanding of plant adaptive responses to salt stress. In addition, the shade of a small beam of light on the manipulation of N dynamics through genetic engineering with an aim of developing salt-tolerant plants is also highlighted.
Collapse
Affiliation(s)
- Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moksh Mahajan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Mohammed Albaqami
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | | | | |
Collapse
|
8
|
Peinado-Torrubia P, Álvarez R, Lucas M, Franco-Navarro JD, Durán-Gutiérrez FJ, Colmenero-Flores JM, Rosales MA. Nitrogen assimilation and photorespiration become more efficient under chloride nutrition as a beneficial macronutrient. FRONTIERS IN PLANT SCIENCE 2023; 13:1058774. [PMID: 36704154 PMCID: PMC9871469 DOI: 10.3389/fpls.2022.1058774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Chloride (Cl-) and nitrate ( NO 3 - ) are closely related anions involved in plant growth. Their similar physical and chemical properties make them to interact in cellular processes like electrical balance and osmoregulation. Since both anions share transport mechanisms, Cl- has been considered to antagonize NO 3 - uptake and accumulation in plants. However, we have recently demonstrated that Cl- provided at beneficial macronutrient levels improves nitrogen (N) use efficiency (NUE). Biochemical mechanisms by which beneficial Cl- nutrition improves NUE in plants are poorly understood. First, we determined that Cl- nutrition at beneficial macronutrient levels did not impair the NO 3 - uptake efficiency, maintaining similar NO 3 - content in the root and in the xylem sap. Second, leaf NO 3 - content was significantly reduced by the treatment of 6 mM Cl- in parallel with an increase in NO 3 - utilization and NUE. To verify whether Cl- nutrition reduces leaf NO 3 - accumulation by inducing its assimilation, we analysed the content of N forms and the activity of different enzymes and genes involved in N metabolism. Chloride supply increased transcript accumulation and activity of most enzymes involved in NO 3 - assimilation into amino acids, along with a greater accumulation of organic N (mostly proteins). A reduced glycine/serine ratio and a greater ammonium accumulation pointed to a higher activity of the photorespiration pathway in leaves of Cl--treated plants. Chloride, in turn, promoted higher transcript levels of genes encoding enzymes of the photorespiration pathway. Accordingly, microscopy observations suggested strong interactions between different cellular organelles involved in photorespiration. Therefore, in this work we demonstrate for the first time that the greater NO 3 - utilization and NUE induced by beneficial Cl- nutrition is mainly due to the stimulation of NO 3 - assimilation and photorespiration, possibly favouring the production of ammonia, reductants and intermediates that optimize C-N re-utilization and plant growth. This work demonstrates new Cl- functions and remarks on its relevance as a potential tool to manipulate NUE in plants.
Collapse
Affiliation(s)
- Procopio Peinado-Torrubia
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología Universidad de Sevilla, Sevilla, Spain
| | - Marta Lucas
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - Juan D. Franco-Navarro
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - Francisco J. Durán-Gutiérrez
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - José M. Colmenero-Flores
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| | - Miguel A. Rosales
- Plant Ion and Water Regulation Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Seville, Spain
| |
Collapse
|
9
|
Duan Y, Yang H, Yang H, Wu Y, Fan S, Wu W, Lyu L, Li W. Integrative physiological, metabolomic and transcriptomic analysis reveals nitrogen preference and carbon and nitrogen metabolism in blackberry plants. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153888. [PMID: 36577314 DOI: 10.1016/j.jplph.2022.153888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an indispensable element for plant growth and development. To understand the regulation of underlying carbon (C) and N metabolism in blackberry plants, we performed integrated analyses of the physiology, metabolome and transcriptome. Blackberry plants were subjected to no N, nitrate (NO3⁻)-N, ammonium (NH4+)-N and urea treatments. Our results showed that the NH4⁺-N treatment yielded higher values for the biomass, chlorophyll, antioxidants, N contents and antioxidant enzyme activities, as well as lower levels of free radicals and the C/N ratio compared with other treatments. Transcriptome analysis showed that different N forms significantly affected photosynthesis, flavonoid biosynthesis and the TCA cycle. Metabolome analysis indicated that the levels of lipids, carbohydrates, flavonoids and amino acids were markedly changed under different N treatments. Integrated transcriptomic and metabolomic data revealed that amino acids, including proline, arginine, L-isoleucine, L-aspartate, threonine, and L-glutamate, played important roles in maintaining normal plant growth by regulating N metabolism and amino acid metabolism. Overall, blackberry plants preferentially take up NH4⁺-N. Under the NH4⁺-N treatment, N assimilation was stronger, flavonoid biosynthesis was decreased, and the promoting influence of NH4⁺-N on N metabolism was better than that of NO3⁻-N. However, the NO3⁻-N treatment enhanced the C/N ratio, accelerated the process of C metabolism and increased the synthesis of flavonoids, thereby accelerating the flow of N metabolism to C metabolism. These results provide deeper insight into coordinating C and N metabolism and improving N use efficiency in blackberry plants.
Collapse
Affiliation(s)
- Yongkang Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Haiyan Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China.
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China
| | - Sufan Fan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
10
|
Zhao C, Shi Y, Xu Y, Lin N, Dong H, Bei L. Effects of bisphenol A on antioxidation and nitrogen assimilation of maize seedlings roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114255. [PMID: 36343454 DOI: 10.1016/j.ecoenv.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/22/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is becoming a potential environmental toxicity factor. However, BPA's effect and function mechanism on maize roots remain unknown. Here, we investigated characters of root growth of maize seedlings exposed to BPA for 8 d and without BPA for 3 d, and a series of indicators on reactive oxygen homeostasis and nitrogen assimilation were measured. High-dose BPA(15 and 50 mg·L-1) suppressed the root growth and caused increased contents of O2ˑ-, H2O2 and MDA in maize seedling roots. The disturbed ROS homeostasis resulted from the change of antioxidant enzymes, including the increase of APX, GPX, and CAT, and decrease of SOD and POD, and a decrease of antioxidant substance GSH. Meanwhile, High-dose BPA caused a decrease in the soluble protein content, nitrate reductase (NR), glutamate dehydrogenase (GDH), and glutamine oxoglutarate aminotransferase (GOGAT) under the BPA processing phase and recovery period. The low-dose BPA(1.5 and 5 mg·L-1)significantly promoted root growth of maize seedlings and maintained the ROS homeostasis through antioxidant enzyme APX and GPX eliminating redundant ROS. Our results showed that BPA could cause a dual effect on the root growth of maize seedlings, that is, promotion of low-dose and inhibition of high-dose, through ROS homeostasis and nitrogen assimilation in Zea mays.
Collapse
Affiliation(s)
- Changjiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Heilongjiang Province,Daqing, Heilongjiang 163319, China; Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, Heilongjiang 163319, China.
| | - Yuyuan Shi
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Heilongjiang Province,Daqing, Heilongjiang 163319, China
| | - Yanmei Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Agricultural Technology Extension Center of Boli County, Qitaihe City, Heilongjiang 154600, China
| | - Ni Lin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Heilongjiang Province,Daqing, Heilongjiang 163319, China
| | - Hang Dong
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Heilongjiang Province,Daqing, Heilongjiang 163319, China
| | - Lixia Bei
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| |
Collapse
|
11
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|