1
|
Éva C, Oszvald M, Tamás L. Current and possible approaches for improving photosynthetic efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:433-440. [PMID: 30824023 DOI: 10.1016/j.plantsci.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
One of the most important tasks laying ahead today's biotechnology is to improve crop productivity with the aim of meeting increased food and energy demands of humankind. Plant productivity depends on many genetic factors, including life cycle, harvest index, stress tolerance and photosynthetic activity. Many approaches were already tested or suggested to improve either. Limitations of photosynthesis have also been uncovered and efforts been taken to increase its efficiency. Examples include decreasing photosynthetic antennae size, increasing the photosynthetically available light spectrum, countering oxygenase activity of Rubisco by implementing C4 photosynthesis to C3 plants and altering source to sink transport of metabolites. A natural and effective photosynthetic adaptation, the sugar alcohol metabolism got however remarkably little attention in the last years, despite being comparably efficient as C4, and can be considered easier to introduce to new species. We also propose root to shoot carbon-dioxide transport as a means to improve photosynthetic performance and drought tolerance at the same time. Different suggestions and successful examples are covered here for improving plant photosynthesis as well as novel perspectives are presented for future research.
Collapse
Affiliation(s)
- Csaba Éva
- Applied Genomics Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár 2462, Hungary.
| | - Mária Oszvald
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - László Tamás
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest 1117, Hungary
| |
Collapse
|
2
|
Safi H, Belgaroui N, Masmoudi K, Brini F. Promoter of the wheat lipid transfer protein, TdLTP4, drives leaf-preferential expression in transgenic Arabidopsis plants. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:275-285. [PMID: 32172770 DOI: 10.1071/fp18040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/15/2018] [Indexed: 06/10/2023]
Abstract
In a previous report, a gene encoding a durum wheat lipid transfer protein, TdLTP4, was characterised as induced by abiotic and biotic stresses. In the present work, we investigated the regulation of the gene TdLTP4. A TdLTP4 promoter (PrTdLTP4) region of around 868-bp was isolated and sequenced. Its analysis revealed the presence of several DNA boxes known to be important mainly in the regulation of genes expressed under abiotic stress (salt and dehydration), abscisic acid (ABA) and pathogen responsiveness. The whole PrTdLTP4 fragment was fused to the reporter gene β-glucuronidase (gusA) and analysed in transgenic Arabidopsis plants. Histochemical assays of transgenic Arabidopsis plants showed that the 868-bp fragment of TdLTP4 gene promoter was found to be sufficient for both spatial and temporal patterns of its expression. Under control conditions, GUS histochemical staining was observed significantly only in young leaves of 8- and 12-day-old plants. Whereas after stress challenge especially with NaCl and mannitol, GUS transcripts expression increased substantially in leaves of 30-day-old transgenic seedlings. Real-time qPCR expression analysis of the gusA gene, confirmed the results of histochemical assays. Taken together these data provide evidence that PrTdLTP4 functions as abiotic-stress-inducible promoter in a heterologous dicot system and could be an excellent tool for future crop improvement.
Collapse
Affiliation(s)
- Héla Safi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177' 3018, Sfax - Tunisia
| | - Nebras Belgaroui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177' 3018, Sfax - Tunisia
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177' 3018, Sfax - Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, BP '1177' 3018, Sfax - Tunisia
| |
Collapse
|
3
|
Tounsi S, Feki K, Saïdi MN, Maghrebi S, Brini F, Masmoudi K. Promoter of the TmHKT1;4-A1 gene of Triticum monococcum directs stress inducible, developmental regulated and organ specific gene expression in transgenic Arbidopsis thaliana. World J Microbiol Biotechnol 2018; 34:99. [DOI: 10.1007/s11274-018-2485-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/16/2018] [Indexed: 11/30/2022]
|
4
|
Li J, Qin RY, Li H, Xu RF, Qiu CH, Sun YC, Ma H, Yang YC, Ni DH, Li L, Wei PC, Yang JB. Identification and analysis of the mechanism underlying heat-inducible expression of rice aconitase 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:22-31. [PMID: 25711810 DOI: 10.1016/j.plantsci.2015.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/23/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Respiratory metabolism is an important though poorly understood facet of plant adaptation to stress. Posttranslational modification of aconitase, a component of the tricarboxylic acid cycle (TCA), may be involved in stress tolerance. However, such stress-related transcriptional regulation and its mechanism remain unknown. In this study, we found that expression of the rice Aconitase gene OsACO1 is induced in a time-dependent manner by heat but not other typical abiotic stresses. To analyze the transcriptional regulation mechanism underlying the response to heat, the OsACO1 promoter (POsACO1) was isolated and characterized in transgenic rice. Using qualitative and quantitative analyses, we found that the expression of the GUS reporter gene responded to heat in different tissues and at different stages of development when driven by POsACO1. A series of 5' distal deletions of POsACO1 was generated to delineate the region responsible for heat-induced gene expression. Transient expression analyses in tobacco leaves identified a 322-bp minimal region between -1386 and -1065 as being essential and sufficient for heat-induced expression by POsACO1. We screened for known heat response-related cis-elements in this 322-bp region; however, sequences correlating with heat-induced gene expression were not identified in POsACO1. Therefore, truncations and successive mutagenesis analyses were performed in this 322-bp region. By comparing the activities of promoter fragments and their derivatives, our results indicated that the heat response element resided in a 9-bp region between -1132 and -1124, a sequence that contains a W-box motif. Additional site-directed mutagenesis analyses eliminated the heat response activity of POsACO1 via the W-box element, and an electrophoretic mobility shift assay (EMSA) indicated the binding of POsACO1 by factors in the nuclear extracts of heat-stressed rice seedlings in a W-box-dependent manner. Our results illustrate the expression pattern of a key component of the TCA response to abiotic stress and establish a putative regulatory pathway in the transcriptional modulation of rice respiratory metabolism genes in response to heat.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, China
| | - Rui-Ying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Rong-Fang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Chun-Hong Qiu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yi-Chen Sun
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ya-Chun Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Da-Hu Ni
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Li Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peng-Cheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Jian-Bo Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
5
|
Feki K, Brini F, Ben Amar S, Saibi W, Masmoudi K. Comparative functional analysis of two wheat Na+/H+ antiporter SOS1 promoters in Arabidopsis thaliana under various stress conditions. J Appl Genet 2014; 56:15-26. [DOI: 10.1007/s13353-014-0228-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
6
|
Saad RB, Romdhan WB, Zouari N, Azaza J, Mieulet D, Verdeil JL, Guiderdoni E, Hassairi A. Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Res 2011; 20:1003-18. [PMID: 21188636 DOI: 10.1007/s11248-010-9474-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 12/10/2010] [Indexed: 11/26/2022]
Abstract
In our recent published work it has been demonstrated that AlSAP, a gene encoding an A20/AN1 zinc-finger protein (stress-associated protein) of the C4 halophyte grass Aeluropus littoralis, is inducible by various abiotic stresses and by hormonal stimuli. To further investigate the regulation of the gene, a 586-bp genomic fragment upstream of the AlSAP translated sequence has been isolated, cloned, and designated as the "Pr ( AlSAP )" promoter. Sequence analysis of "Pr ( AlSAP )" revealed the presence of cis-regulatory elements which could be required for abiotic stress, abscisic acid (ABA), and salicylic acid (SA) responsiveness and for tissue-specific and vascular expression. The Pr ( AlSAP ) promoter was fused to the β-glucuronidase (gusA) gene and the resulting construct transferred into tobacco. Histochemical assays of stably transformed tobacco plants showed that Pr ( AlSAP ) is active in this heterologous C3 system. While full-length gusA transcripts accumulated in whole 15, 30, and 45-day-old plants, GUS histochemical staining was only observed in leaves and stems of 45-day-old, or older, transgenic seedlings. Histological sections prepared at this stage revealed activity localized in leaf veins (phloem and bundle sheath) and stems (phloem and cortex) but not in roots. Furthermore, gusA transcripts accumulated in an age-dependent manner with a basipetal pattern in leaf and stem tissues throughout the plant. In flowers, GUS expression was detected in sepals only. The accumulation of gusA transcripts was up-regulated by salt, dehydration, ABA, and SA treatment. Altogether, these results show that, when used in a heterologous dicot system, Pr ( AlSAP ) is an age-dependent, abiotic-stress-inducible, organ-specific and tissue-specific promoter.
Collapse
Affiliation(s)
- Rania Ben Saad
- University of Sfax, Centre of Biotechnology of Sfax, BP1117, 3018 Sfax, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li QF, Zhang GY, Dong ZW, Yu HX, Gu MH, Sun SSM, Liu QQ. Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:351-8. [PMID: 19251430 DOI: 10.1016/j.plaphy.2009.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/02/2009] [Accepted: 02/05/2009] [Indexed: 05/07/2023]
Abstract
Starch-debranching enzymes (DBEs) are key enzymes involved in starch metabolism in cereals, having a dual function, in both starch synthesis and degradation. However, their precise roles in this pathway, particularly their expression profiles, remain unclear. In the present study, we performed a quantitative real-time PCR (Q-PCR) analysis of the expression pattern of the OsPUL gene encoding a pullulanase-type DBE in different tissues as well as in seeds at different developmental stages. The results showed that this gene was expressed only in seeds. In addition, the 1177-bp OsPUL promoter sequence was cloned, and some endosperm-specific motifs such as the GCN4 and AACA motifs were observed to exist in this region. The promoter was then fused with the GUS reporter gene and its expression was carefully investigated in transgenic rice. The data from both histochemical and fluorometric analyses showed that the OsPUL promoter was capable of driving the target gene to have a high level of endosperm-specific expression. The OsPUL gene maintained a relatively high expression level during the entire period of seed development, and peaked in the middle and late stages. This observation was very consistent with that of the endogenous transcription analysis by Q-PCR. Furthermore, the seed germination experiment showed that the OsPUL promoter actively functions in the late stage of seed germination. The expression of the OsPUL gene was maintained at a significant level during the entire grain filling period and in the late stage of seed germination, which coincided with its involvement in starch anabolism and catabolism.
Collapse
|
8
|
Koo SC, Choi MS, Chun HJ, Park HC, Kang CH, Shim SI, Chung JI, Cheong YH, Lee SY, Yun DJ, Chung WS, Cho MJ, Kim MC. Identification and characterization of alternative promoters of the rice MAP kinase gene OsBWMK1. Mol Cells 2009; 27:467-73. [PMID: 19390828 DOI: 10.1007/s10059-009-0062-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 10/20/2022] Open
Abstract
Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expression patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.
Collapse
Affiliation(s)
- Sung Cheol Koo
- Division of Applied Life Science, Graduate School of Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tao Y, Shang-long Z, Jing-mei L, De-ming C. Approaches to improve heterogeneous gene expression in transgenic plants. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/cjb200697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractWith the development of plant genetic engineering, many transformation methods can be used to transfer heterogeneous genes into plants to develop genetic crops. However, a lot of research results have shown that transgene expression remains largely unpredictable and there is great variation of expression level in different transgenic plant lines. Plant genetic engineering research is reviewed in the present paper. We analysed the reasons why low efficiency of heterogeneous gene expression has happened in transgenic plants in terms of DNA modification, localization of proteins and methods of transformation used. Some strategies for improving heterogeneous gene expression in transgenic plants are also discussed.
Collapse
|
10
|
Tittarelli A, Milla L, Vargas F, Morales A, Neupert C, Meisel LA, Salvo-G H, Peñaloza E, Muñoz G, Corcuera LJ, Silva H. Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2573-82. [PMID: 17562688 DOI: 10.1093/jxb/erm123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phosphorus deficiency is one of the major nutrient stresses affecting plant growth. Plants respond to phosphate (Pi) deficiency through multiple strategies, including the synthesis of high-affinity Pi transporters. In this study, the expression pattern of one putative wheat high-affinity phosphate transporter, TaPT2, was examined in roots and leaves under Pi-deficient conditions. TaPT2 transcript levels increased in roots of Pi-starved plants. A 579 bp fragment of the TaPT2 promoter is sufficient to drive the expression of the GUS reporter gene specifically in roots of Pi-deprived wheat. This TaPT2 promoter fragment was also able to drive expression of the GUS reporter gene in transgenic Arabidopsis thaliana, under similar growth conditions. Conserved regions and candidate regulatory motifs were detected by comparing this promoter with Pi transporter promoters from barley, rice, and Arabidopsis. Altogether, these results indicate that there are conserved cis-acting elements and trans-acting factors that enable the TaPT2 promoter to be regulated in a tissue-specific and Pi-dependent fashion in both monocots and dicots.
Collapse
Affiliation(s)
- A Tittarelli
- Millennium Nucleus in Plant Cell Biology and Center of Plant Biotechnology, Andres Bello University, Av República 217, 837-0146, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bajaj S, Mohanty A. Recent advances in rice biotechnology--towards genetically superior transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:275-307. [PMID: 17129312 DOI: 10.1111/j.1467-7652.2005.00130.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice biotechnology has made rapid advances since the first transgenic rice plants were produced 15 years ago. Over the past decade, this progress has resulted in the development of high frequency, routine and reproducible genetic transformation protocols for rice. This technology has been applied to produce rice plants that withstand several abiotic stresses, as well as to gain tolerance against various pests and diseases. In addition, quality improving and increased nutritional value traits have also been introduced into rice. Most of these gains were not possible through conventional breeding technologies. Transgenic rice system has been used to understand the process of transformation itself, the integration pattern of transgene as well as to modulate gene expression. Field trials of transgenic rice, especially insect-resistant rice, have recently been performed and several other studies that are prerequisite for safe release of transgenic crops have been initiated. New molecular improvisations such as inducible expression of transgene and selectable marker-free technology will help in producing superior transgenic product. It is also a step towards alleviating public concerns relating to issues of transgenic technology and to gain regulatory approval. Knowledge gained from rice can also be applied to improve other cereals. The completion of the rice genome sequencing together with a rich collection of full-length cDNA resources has opened up a plethora of opportunities, paving the way to integrate data from the large-scale projects to solve specific biological problems.
Collapse
Affiliation(s)
- Shavindra Bajaj
- Gene Technology, The Horticulture and Food Research Institute of New Zealand Limited (HortResearch) 120 Mt. Albert Road, Private Bag 92169, Auckland, New Zealand.
| | | |
Collapse
|