1
|
Komarova T, Shipounova I, Kalinina N, Taliansky M. Application of Chitosan and Its Derivatives Against Plant Viruses. Polymers (Basel) 2024; 16:3122. [PMID: 39599213 PMCID: PMC11598201 DOI: 10.3390/polym16223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Chitosan is a natural biopolymer that is industrially produced from chitin via deacetylation. Due to its unique properties and a plethora of biological activities, chitosan has found application in diverse areas from biomedicine to agriculture and the food sector. Chitosan is regarded as a biosafe, biodegradable, and biocompatible compound that was demonstrated to stimulate plant growth and to induce a general plant defense response, enhancing plant resistance to various pathogens, including bacteria, fungi, nematodes, and viruses. Here, we focus on chitosan application as an antiviral agent for plant protection. We review both the pioneer studies and recent research that report the effect of plant treatment with chitosan and its derivatives on viral infection. Special attention is paid to aspects that affect the biological activity of chitosan: polymer length and, correspondingly, its molecular weight; concentration; deacetylation degree and charge; application protocol; and experimental set-up. Thus, we compare the reported effects of various forms and derivatives of chitosan as well as chitosan-based nanomaterials, focusing on the putative mechanisms underlying chitosan-induced plant resistance to plant viruses.
Collapse
Affiliation(s)
- Tatiana Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Irina Shipounova
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Natalia Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
2
|
Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. Int J Biol Macromol 2020; 166:1554-1569. [PMID: 33181210 DOI: 10.1016/j.ijbiomac.2020.11.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
The second most abundant biological macromolecule, next to cellulose is Chitosan. It is a versatile naturally occurring hydrophilic polysaccharide, derived as a deacetylated form of chitin. Due to its biocompatibility, biodegradability and antimicrobial activity, it has become a significant area of research towards drug delivery system, plant growth promotion, anti-pathogenic potentiality, seed priming and in plant defense mechanism. Various synthetic strategies have been established in recent years that couples different metals with chitosan nanoparticles. Metals like silver, copper, zinc, iron and nickel are highly compatible to form chitosan metallic nanoparticles and are proved to be non-toxic to the agricultural plant system. This review highlights the mode of action of nanochitosan on Gram-positive and Gram-negative bacteria in a distinguished manner as well as its action on fungi. A prime focus has been given on the skeletal framework of the metallic nanochitosan particles. Our study also projects the antimicrobial mechanism of chitosan based on its physiochemical properties, environmental factors and the type of organism on which it acts. Moreover, the mechanism for stimulation of plant immunity by metallic nanochitosan has also been reviewed. Our study relies on the conclusion that chitosan metallic nanoparticles showed enhanced anti-pathogenic and plant growth promoting activity in comparison to bulk chitosan.
Collapse
|
3
|
Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 2015; 77:36-51. [DOI: 10.1016/j.ijbiomac.2015.02.039] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/03/2015] [Accepted: 02/16/2015] [Indexed: 12/20/2022]
|
4
|
Iriti M, Varoni EM. Chitosan-induced antiviral activity and innate immunity in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2935-44. [PMID: 25226839 DOI: 10.1007/s11356-014-3571-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/05/2014] [Indexed: 05/23/2023]
Abstract
Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.
Collapse
Affiliation(s)
- Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Via G. Celoria 2, 20133, Milan, Italy,
| | | |
Collapse
|
5
|
Kim K, Choi D, Kim SM, Kwak DY, Choi J, Lee S, Lee BC, Hwang D, Hwang I. A systems approach for identifying resistance factors to Rice stripe virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:534-545. [PMID: 22217248 DOI: 10.1094/mpmi-11-11-0282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rice stripe virus (RSV) causes disease that can severely affect the productivity of rice (Oryza sativa). Several RSV-resistant cultivars have been developed. However, host factors conferring RSV resistance in these cultivars are still elusive. Here, we present a systems approach for identifying potential rice resistance factors. We developed two near-isogenic lines (NIL), RSV-resistant NIL22 and RSV-susceptible NIL37, and performed gene expression profiling of the two lines in RSV-infected and RSV-uninfected conditions. We identified 237 differentially expressed genes (DEG) between NIL22 and NIL37. By integrating with known quantitative trait loci (QTL), we selected 11 DEG located within the RSV resistance QTL as RSV resistance factor candidates. Furthermore, we identified 417 DEG between RSV-infected and RSV-uninfected conditions. Using an interaction network-based method, we selected 20 DEG highly interacting with the two sets of DEG as RSV resistance factor candidates. Among the 31 candidates, we selected the final set of 21 potential RSV resistance factors whose differential expression was confirmed in the independent samples using real-time reverse-transcription polymerase chain reaction. Finally, we reconstructed a network model delineating potential association of the 21 selected factors with resistance-related processes. In summary, our approach, based on gene expression profiling, revealed potential host resistance factors and a network model describing their relationships with resistance-related processes, which can be further validated in detailed experiments.
Collapse
Affiliation(s)
- Kangmin Kim
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang H, Wang W, Yin H, Zhao X, Du Y. Oligochitosan induces programmed cell death in tobacco suspension cells. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.10.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Zhang H, Zhao X, Yang J, Yin H, Wang W, Lu H, Du Y. Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. PLANT CELL REPORTS 2011; 30:1153-62. [PMID: 21336582 DOI: 10.1007/s00299-011-1024-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/11/2011] [Accepted: 01/21/2011] [Indexed: 05/16/2023]
Abstract
Chitooligosaccharide (COS) or oligochitosan has been shown to induce tobacco defense responses which are connected with nitric oxide (NO) and OIPK (oligochitosan-induced Ser/Thr protein kinase). The aim of this study was to reveal the relationship between NO production and OIPK pathway in the defense response of tobacco elicited by COS. NO generation was investigated by epidermal strip bioassay and fluorophore microscope using fluorophore diaminofluorescein diacetate (DAF-2DA). Tobacco epidermal cells treated with COS resulted in production of NO, which was first present in chloroplast, then in nucleus, finally in the whole cell; this NO production was sensitive to NO scavenger cPTIO and the mammalian NO synthase (NOS) inhibitor L: -NAME, suggesting that NOS-like enzyme maybe involved in NO generation in tobacco epidermal cells. However, NOS and nitrate reductase (NR, EC 1.6.6.1) inhibitors reduced NO content in tobacco leaves by using NO Assay Kit, suggesting both NOS and NR were involved in NO production in tobacco leaves. Using a pharmacological approach and western blotting, we provide evidence that NO acts upstream of OIPK expression. NO scavenger, NOS inhibitor partly blocked the activation of OIPK and the activities of several defense-related enzymes induced by COS; treatment with NO donor sodium nitroprusside (SNP) induced the activation of OIPK and enhanced the defense systems. The results suggest that COS is able to induce NO generation, which results in up-regulation the activities of some defense-related enzymes through an OIPK-dependent or independent pathway.
Collapse
Affiliation(s)
- Hongyan Zhang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Lu H, Zhao X, Wang W, Yin H, Xu J, Bai X, Du Y. Inhibition effect on tobacco mosaic virus and regulation effect on calreticulin of oligochitosan in tobacco by induced Ca2+ influx. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
|
10
|
Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y. Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydr Res 2009; 344:1975-83. [DOI: 10.1016/j.carres.2009.06.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/03/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
|
11
|
Yafei C, Yong Z, Xiaoming Z, Peng G, Hailong A, Yuguang D, Yingrong H, Hui L, Yuhong Z. Functions of oligochitosan induced protein kinase in tobacco mosaic virus resistance and pathogenesis related proteins in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:724-31. [PMID: 19410476 DOI: 10.1016/j.plaphy.2009.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 03/09/2009] [Accepted: 03/15/2009] [Indexed: 05/27/2023]
Abstract
Oligochitosan (OC) can regulate plant defense responses in many aspects, but the basic signal transduction pathway is still unclear. In this study, we used transgenic (TG) tobacco (Nicotiana Tabacum var. Samsun NN) as plant material whose oligochitosan induced protein kinase (OIPK) gene was inhibited by antisense transformation, to study the role of OIPK in tobacco defense reactions. The results showed that OIPK could increase tobacco resistance against tobacco mosaic virus (TMV), in that wild-type (WT) tobacco showed longer lesion appearance time, higher lesion inhibition ratio, smaller average final lesion diameter and lower average final lesion area percent to whole leaf area. It led us to analyze some pathogenesis related (PR) enzymes' activities and mRNA level, which played roles in tobacco resistance against TMV. We found that phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were positively related to OIPK, but not polyphenol oxidase (PPO). It was also demonstrated that OIPK mRNA could be induced by OC, wound and TMV infection. In addition, OIPK could up-regulated three PR genes, PAL, chitinase (CHI) and beta-1, 3-glucanase (GLU) mRNA level to different extent. Taken together, these results implied that OIPK could function in tobacco resistance against both biotic and abiotic stress, possibly via various PR proteins.
Collapse
Affiliation(s)
- Chen Yafei
- School of Sciences, Hebei University of Technology, Tianjin 300130, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lu H, Zhao X, Bai X, Du Y. Involvement of N-mediated defense in oligochitosan inducing resistance to tobacco mosaic virus. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Yang J, Zhao X, Ma X, Du Y. Identification of S-adenosyl-l-methionine synthetase as an interaction partner of an oligochitosan-induced protein kinase in tobacco in the yeast two-hybrid system. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|