1
|
Kartseva T, Aleksandrov V, Alqudah AM, Schierenbeck M, Tasheva K, Börner A, Misheva S. Exploring Novel Genomic Loci and Candidate Genes Associated with Plant Height in Bulgarian Bread Wheat via Multi-Model GWAS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2775. [PMID: 39409644 PMCID: PMC11479123 DOI: 10.3390/plants13192775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
In the context of crop breeding, plant height (PH) plays a pivotal role in determining straw and grain yield. Although extensive research has explored the genetic control of PH in wheat, there remains an opportunity for further advancements by integrating genomics with growth-related phenomics. Our study utilizes the latest genome-wide association scan (GWAS) techniques to unravel the genetic basis of temporal variation in PH across 179 Bulgarian bread wheat accessions, including landraces, tall historical, and semi-dwarf modern varieties. A GWAS was performed with phenotypic data from three growing seasons, the calculated best linear unbiased estimators, and the leveraging genotypic information from the 25K Infinium iSelect array, using three statistical methods (MLM, FarmCPU, and BLINK). Twenty-five quantitative trait loci (QTL) associated with PH were identified across fourteen chromosomes, encompassing 21 environmentally stable quantitative trait nucleotides (QTNs), and four haplotype blocks. Certain loci (17) on chromosomes 1A, 1B, 1D, 2A, 2D, 3A, 3B, 4A, 5B, 5D, and 6A remain unlinked to any known Rht (Reduced height) genes, QTL, or GWAS loci associated with PH, and represent novel regions of potential breeding significance. Notably, these loci exhibit varying effects on PH, contribute significantly to natural variance, and are expressed during seedling to reproductive stages. The haplotype block on chromosome 6A contains five QTN loci associated with reduced height and two loci promoting height. This configuration suggests a substantial impact on natural variation and holds promise for accurate marker-assisted selection. The potentially novel genomic regions harbor putative candidate gene coding for glutamine synthetase, gibberellin 2-oxidase, auxin response factor, ethylene-responsive transcription factor, and nitric oxide synthase; cell cycle-related genes, encoding cyclin, regulator of chromosome condensation (RCC1) protein, katanin p60 ATPase-containing subunit, and expansins; genes implicated in stem mechanical strength and defense mechanisms, as well as gene regulators such as transcription factors and protein kinases. These findings enrich the pool of semi-dwarfing gene resources, providing the potential to further optimize PH, improve lodging resistance, and achieve higher grain yields in bread wheat.
Collapse
Affiliation(s)
- Tania Kartseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Vladimir Aleksandrov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466 Seeland, OT Gatersleben, Germany; (M.S.); (A.B.)
- CONICET CCT La Plata, 8 n°1467, La Plata 1900, Argentina
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466 Seeland, OT Gatersleben, Germany; (M.S.); (A.B.)
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| |
Collapse
|
2
|
Heckmann A, Perochon A, Doohan FM. Genome-wide analysis of salicylic acid and jasmonic acid signalling marker gene families in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:691-704. [PMID: 38864777 DOI: 10.1111/plb.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Jasmonic acid (JA) and salicylic acid (SA) phytohormone pathways are important regulators of stress tolerance. Knowledge regarding the diversity, phylogeny and functionality of wheat genes involved in JA and SA response is limited. Using Arabidopsis, rice and wheat genomic and wheat disease transcriptomic data, we deduced the size, phylogenetic diversity and pathogen-responsiveness of seven hormone-responsive gene families, and thus selected 14 candidates as potential hormone responsive gene markers. Gene-specific expression studies assessed the impact of exogenous JA and SA on their transcriptional activation in leaves of two distinct wheat cultivars. RNAseq data were interrogated to assess their disease responsiveness and tissue-specific expression. This study elucidated the number, phylogeny and pathogen-responsiveness of wheat genes from seven families, including 12 TaAOS, 6 TaJAMyb, 256 TaWRKY group III, 85 TaPR1, 205 TaPR2, 76 TaPR3 and 124 TaPR5. This included the first description of the wheat AOS, JAMyb, PR2, PR3 and PR5 gene families. Gene expression studies delineated TaAOS1-5B and TaJAMyb-4A as JA-responsive in leaves, but not significantly responsive to SA treatment, while TaWRKY45-B was a SA- but not a JA-responsive marker. Other candidate genes were either unresponsive or non-specific to SA or JA. Our findings highlight that all seven gene families are greatly expanded in wheat as compared to other plants (up to 7.6-fold expansion), and demonstrate disparity in the response to biotic stress between some homoeologous and paralogous sequences within these families. The SA- and JA-responsive marker genes identified herein will prove useful tools to monitor these signalling pathways in wheat.
Collapse
Affiliation(s)
- A Heckmann
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| | - A Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| | - F M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Alsamman AM, H. Mousa K, Istanbuli T, Abd El-Maksoud MM, Tawkaz S, Hamwieh A. Unveiling the genetic basis of Fusarium wilt resistance in chickpea using GWAS analysis and characterization of candidate genes. Front Genet 2024; 14:1292009. [PMID: 38327700 PMCID: PMC10849131 DOI: 10.3389/fgene.2023.1292009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: Chickpea is a legume crop that thrives in regions with semi-arid or temperate climates. Its seeds are an excellent source of proteins, carbohydrates, and minerals, especially high-quality proteins. Chickpea cultivation faces several challenges including Fusarium wilt (FW), a major fungal disease that significantly reduces productivity. Methods: In this study, a Genome-wide Association Analysis (GWAS) was conducted to identify multiple genomic loci associated with FW resistance in chickpea. We conducted a comprehensive evaluation of 180 chickpea genotypes for FW resistance across three distinct locations (Ethiopia, Tunisia, and Lebanon) during the 2-year span from 2015 to 2016. Disease infection measurements were recorded, and the wilt incidence of each genotype was calculated. We employed a set of 11,979 single nucleotide polymorphisms (SNPs) markers distributed across the entire chickpea genome for SNP genotyping. Population structure analysis was conducted to determine the genetic structure of the genotypes. Results and Discussion: The population structure unveiled that the analyzed chickpea germplasm could be categorized into four sub-populations. Notably, these sub-populations displayed diverse geographic origins. The GWAS identified 11 SNPs associated with FW resistance, dispersed across the genome. Certain SNPs were consistent across trials, while others were specific to particular environments. Chromosome CA2 harbored five SNP markers, CA5 featured two, and CA4, CA6, CA7, and CA8 each had one representative marker. Four SNPs demonstrated an association with FW resistance, consistently observed across a minimum of three distinct environments. These SNPs included SNP5826041, SNP5825086, SNP11063413, SNP5825195, which located in CaFeSOD, CaS13like, CaNTAQ1, and CaAARS genes, respectively. Further investigations were conducted to gain insights into the functions of these genes and their role in FW resistance. This progress holds promise for reducing the negative impact of the disease on chickpea production.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
- Agricultural Research Center (ARC), Agricultural Genetic Engineering Research Institute (AGERI), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | | | - Sawsan Tawkaz
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| |
Collapse
|
4
|
Zhang SB, Zhang WJ, Zhai HC, Lv YY, Cai JP, Jia F, Wang JS, Hu YS. Expression of a wheat β-1,3-glucanase in Pichia pastoris and its inhibitory effect on fungi commonly associated with wheat kernel. Protein Expr Purif 2019; 154:134-139. [DOI: 10.1016/j.pep.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
|
5
|
Su Y, Wang Z, Liu F, Li Z, Peng Q, Guo J, Xu L, Que Y. Isolation and Characterization of ScGluD2, a New Sugarcane beta-1,3-Glucanase D Family Gene Induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1348. [PMID: 27642288 PMCID: PMC5009122 DOI: 10.3389/fpls.2016.01348] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/22/2016] [Indexed: 05/02/2023]
Abstract
Beta-1,3-glucanases (EC 3.2.1.39), commonly known as pathogenesis-related (PR) proteins, play an important role not only in plant defense against fungal pathogens but also in plant physiological and developmental processes. However, only a limited number of sugarcane beta-1,3-glucanase genes have been isolated. In the present study, we identified and characterized a new beta-1,3-glucanase gene ScGluD2 (GenBank Acc No. KF664181) from sugarcane. An X8 domain was present at the C terminal region of ScGluD2, suggesting beta-1,3-glucan-binding function. Phylogenetic analysis showed that the predicted ScGluD2 protein was classified into subfamily D beta-1,3-glucanase. Localization of the ScGluD2 protein in the plasma membrane was determined by tagging it with green fluorescent protein. The expression of ScGluD2 was more up-regulated in sugarcane smut-resistant cultivars in the early stage (1 or 3 days) than in the susceptible ones after being challenged by the smut pathogen, revealing that ScGluD2 may be involved in defense against the invasion of Sporisorium scitamineum. Transient overexpression of ScGluD2 in Nicotiana benthamiana leaves induced a defense response and exhibited antimicrobial action on the tobacco pathogens Pseudomonas solanacearum and Botrytis cinerea, further demonstrating that ScGluD2 was related to the resistance to plant pathogens. However, the transcripts of ScGluD2 partially increased (12 h) under NaCl stress, and were steadily up-regulated from 6 to 24 h upon ABA, H2O2, and CdCl2 treatments, suggesting that ABA may be a signal molecule regulating oxidative stress and play a role in the salt and heavy metal stress-induced stimulation of ScGluD2 transcripts. Taken together, ScGluD2, a novel member of subfamily D beta-1,3-glucanase, was a stress-related gene of sugarcane involved in plant defense against smut pathogen attack and salt and heavy metal stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
6
|
Su YC, Xu LP, Xue BT, Wu QB, Guo JL, Wu LG, Que YX. Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. PLANT CELL REPORTS 2013; 32:1503-19. [PMID: 23842883 DOI: 10.1007/s00299-013-1463-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 05/22/2013] [Indexed: 05/02/2023]
Abstract
Two β-1,3-glucanase genes from sugarcane were cloned and characterized. They were all located in apoplast and involves in different expression patterns in biotic and abiotic stress. Smut caused by Sporisorium scitamineum is a serious disease in the sugarcane industry. β-1,3-Glucanase, a typical pathogenesis-related protein, has been shown to express during plant-pathogen interaction and involves in sugarcane defense response. In this study, β-1,3-glucanase enzyme activity in the resistant variety increased faster and lasted longer than that of the susceptible one when inoculated with S. scitamineum, along with a positive correlation between the activity of the β-1,3-glucanase and smut resistance. Furthermore, two β-1,3-glucanase genes from S. scitamineum infected sugarcane, ScGluA1 (GenBank Accession No. KC848050) and ScGluD1 (GenBank Accession No. KC848051) were cloned and characterized. Phylogenetic analysis suggested that ScGluA1 and ScGluD1 clustered within subfamily A and subfamily D, respectively. Subcellular localization analysis demonstrated that both gene products were targeted to apoplast. Escherichia coli Rosetta (DE3) cells expressing ScGluA1 and ScGluD1 showed varying degrees of tolerance to NaCl, CdCl2, PEG, CuCl2 and ZnSO4. Q-PCR analysis showed up-regulation of ScGluA1 and slight down-regulation of ScGluD1 in response to S. scitamineum infection. It suggested that ScGluA1 may be involved in the defense reaction of the sugarcane to the smut, while it is likely that ScGluD1 was inhibited. The gene expression patterns of ScGluA1 and ScGluD1, in response to abiotic stresses, were similar to sugarcane response against smut infection. Together, β-1,3-glucanase may function in sugarcane defense mechanism for S. scitamineum. The positive responses of ScGluA1 and the negative responses of ScGluD1 to biotic and abiotic stresses indicate they play different roles in interaction between sugarcane and biotic or abiotic stresses.
Collapse
Affiliation(s)
- Ya-chun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou, 350002, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Yang B, Ruan R, Cantu D, Wang X, Ji W, Ronald PC, Dubcovsky J. A comparative approach expands the protein-protein interaction node of the immune receptor XA21 in wheat and rice. Genome 2013; 56:315-26. [PMID: 23957671 PMCID: PMC4873545 DOI: 10.1139/gen-2013-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rice (Oryza sativa) OsXA21 receptor kinase is a well-studied immune receptor that initiates a signal transduction pathway leading to resistance to Xanthomonas oryzae pv. oryzae. Two homologs of OsXA21 were identified in wheat (Triticum aestivum): TaXA21-like1 located in a syntenic region with OsXA21, and TaXA21-like2 located in a nonsyntenic region. Proteins encoded by these two wheat genes interact with four wheat orthologs of known OsXA21 interactors. In this study, we screened a wheat yeast-two-hybrid (Y2H) library using the cytosolic portion of TaXA21-like1 as bait to identify additional interactors. Using full-length T. aestivum and T. monococcum proteins and Y2H assays we identified three novel TaXA21-like1 interactors (TaARG, TaPR2, TmSKL1) plus one previously known in rice (TaSGT1). An additional full-length wheat protein (TaCIPK14) interacted with TaXA21-like2 and OsXA21 but not with TaXA21-like1. The interactions of TaXA21-like1 with TmSKL1 and TaSGT1 were also observed in rice protoplasts using bimolecular fluorescence complementation assays. We then cloned the rice homologs of the novel wheat interactors and confirmed that they all interact with OsXA21. This last result suggests that interspecific comparative interactome analyses can be used not only to transfer known interactions from rice to wheat, but also to identify novel interactions in rice.
Collapse
Affiliation(s)
- Baoju Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | |
Collapse
|