1
|
The effect of exogenous spermine application on some biochemichal and molecular properties in hordeum vulgare l. under both normal and drought stress. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Filiz E, Ozyigit II, Saracoglu IA, Uras ME, Sen U, Yalcin B. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1556120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Ibrahim Adnan Saracoglu
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Mehmet Emin Uras
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Ugur Sen
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Bahattin Yalcin
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| |
Collapse
|
3
|
Gupta DK, Pena LB, Romero-Puertas MC, Hernández A, Inouhe M, Sandalio LM. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. PLANT, CELL & ENVIRONMENT 2017; 40:509-526. [PMID: 26765289 DOI: 10.1111/pce.12711] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 05/18/2023]
Abstract
The role of NADPH oxidases under cadmium (Cd) toxicity was studied using Arabidopsis thaliana mutants AtrbohC, AtrbohD and AtrbohF, which were grown under hydroponic conditions with 25 and 100 μM Cd for 1 and 5 days. Cadmium reduced the growth of leaves in WT, AtrbohC and D, but not in AtrbohF. A time-dependent increase in H2 O2 and lipid peroxidation was observed in all genotypes, with AtrbohC showing the smallest increase. An opposite behaviour was observed with NO accumulation. Cadmium increased catalase activity in WT plants and decreased it in Atrboh mutants, while glutathione reductase and glycolate oxidase activities increased in Atrboh mutants, and superoxide dismutases were down-regulated in AtrbohC. The GSH/GSSG and ASA/DHA couples were also affected by the treatment, principally in AtrbohC and AtrbohF, respectively. Cadmium translocation to the leaves was severely reduced in Atrboh mutants after 1 day of treatment and even after 5 days in AtrbohF. Similar results were observed for S, P, Ca, Zn and Fe accumulation, while an opposite trend was observed for K accumulation, except in AtrbohF. Thus, under Cd stress, RBOHs differentially regulate ROS metabolism, redox homeostasis and nutrient balance and could be of potential interest in biotechnology for the phytoremediation of polluted soils.
Collapse
Affiliation(s)
- D K Gupta
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Prof. Albareda No 1, Granada, 18008, Spain
| | - L B Pena
- Department of Biological Chemistry, Faculty of Pharmacy and Biochemistry, IQUIFIB, CONICET, University of Buenos Aires, Buenos Aires, C1113AAD, Argentina
| | - M C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Prof. Albareda No 1, Granada, 18008, Spain
| | - A Hernández
- Postgrados de Agronomía, Universidad Centroccidental Lisandro Alvarado, Apdo 400, Barquisimeto, 3001, Venezuela
| | - M Inouhe
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - L M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Prof. Albareda No 1, Granada, 18008, Spain
| |
Collapse
|
4
|
Sheikh Mohammadi MH, Etemadi N, Arab MM, Aalifar M, Arab M, Pessarakli M. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:129-143. [PMID: 27915174 DOI: 10.1016/j.plaphy.2016.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/29/2016] [Accepted: 11/22/2016] [Indexed: 05/07/2023]
Abstract
Drought stress is the major limiting factor which affects turfgrass management in area with restricted rainfall or irrigation water supply. Trinexapac ethyl (TE), Paclobutrazol (PAC) and Abscisic acid (ABA) are three plant growth regulators (PGRs) that are commonly used on turf species for increasing their tolerance to different environmental stresses such as drought. However, little is known about the impact of PGRs on stress tolerance of Iranian Perennial ryegrass (Lolium perenne). The present study was conducted to examine the visual and physiological changes of Iranian Perennial ryegrass in response to foliar application of TE, PAC, and ABA under drought stress conditions. According to the obtained results, application of all three PGRs considerably restored visual quality of drought exposed plants. TE treatment increased chlorophyll content, proline content and resulted in less malondialdehyde (MDA) in drought stressed Perennial ryegrass. Application of all PGRs enhanced the relative water content (RWC) and decreased the electrolyte leakage (EL) and Hydrogen peroxide contents (H2O2 content) of plants under drought stress, though the impact of TE was more pronounced. Throughout the experiment, TE- and ABA-treated plant showed greater soluble sugar (SSC) content as compared to the control. Antioxidant enzymes activities of drought exposed plants were considerably increased by PGRs application. Catalase (CAT) and Superoxide dismutase (SOD) activities were greater in TE-treated grasses followed by PAC-treated plants. Ascorbate peroxidase (APX) and peroxidase (POD) activities were significantly enhanced by TE and ABA application. The results of the present investigation suggest that application of TE, ABA and PAC enhances drought tolerance in Perennial ryegrass. TE, PAC and ABA were all effective in mitigating physiological damages resulting from drought stress, however the beneficial effects of TE were more pronounced. The result obtained of real time-PCR suggested that regulation of CAT, APX, POD and SOD genes expression at translational levels highly depended on the application of TE, PAC and ABA. Also, the results showed that deletion mutation in SOD and POD genes were not leading to enzyme inactivation.
Collapse
Affiliation(s)
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, 8415683111 Isfahan, Iran
| | - Mohammad Mehdi Arab
- Department of Horticultural Sciences, College of Abooraihan, University of Tehran (UT), Tehran, Iran
| | - Mostafa Aalifar
- Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Mostafa Arab
- Department of Horticultural Sciences, College of Abooraihan, University of Tehran (UT), Tehran, Iran
| | | |
Collapse
|
5
|
Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatkin AS, Singh HP, Pereira E, Tuteja N. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19002-29. [PMID: 27549233 DOI: 10.1007/s11356-016-7309-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/21/2016] [Indexed: 05/24/2023]
Abstract
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants;
Collapse
Affiliation(s)
- Naser A Anjum
- CESAM-Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Pallavi Sharma
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi, 435020, India.
| | - Sarvajeet S Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, MD University, Rohtak, 124001, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Ekhlaque A Khan
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi, 435020, India
| | - Kiran Kachhap
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi, 435020, India
| | - Amal A Mohamed
- Plant Biochemistry Department, National Research Centre (NRC), Dokki, Egypt
| | - Palaniswamy Thangavel
- Department of Environmental Science, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, -636011, India
| | - Gurumayum Devmanjuri Devi
- Department of Environmental Science, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, -636011, India
| | - Palanisamy Vasudhevan
- Department of Environmental Science, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, -636011, India
| | - Adriano Sofo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Amarendra Narayan Misra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu Lohardaga Road, Brambe, Ranchi, 435020, India.
| | - Alexander S Lukatkin
- Department of Botany, Physiology and Ecology of Plants, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68, Saransk, 430005, Russia
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Eduarda Pereira
- CESAM-Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narendra Tuteja
- Amity Institute of Microbial Technology (AIMT), Amity University Uttar Pradesh, E3 Block, Sector 125, Noida, UP, 201303, India.
| |
Collapse
|
6
|
Liu X, Wu FH, Li JX, Chen J, Wang GH, Wang WH, Hu WJ, Gao LJ, Wang ZL, Chen JH, Simon M, Zheng HL. Glutathione homeostasis and Cd tolerance in the Arabidopsis sultr1;1-sultr1;2 double mutant with limiting sulfate supply. PLANT CELL REPORTS 2016; 35:397-413. [PMID: 26581950 DOI: 10.1007/s00299-015-1892-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Cadmium sensitivity in sultr1;1 - sultr1;2 double mutant with limiting sulfate supply is attributed to the decreased glutathione content that affected oxidative defense but not phytochelatins' synthesis. In plants, glutathione (GSH) homeostasis plays pivotal role in cadmium (Cd) detoxification. GSH is synthesized by sulfur (S) assimilation pathway. Many studies have tried to investigate the role of GSH homeostasis on Cd tolerance using mutants; however, most of them have focused on the last few steps of S assimilation. Until now, mutant evidence that explored the relationship between GSH homeostasis on Cd tolerance and S absorption is rare. To further reveal the role of GSH homeostasis on Cd stress, the wild-type and a sultr1;1-sultr1;2 double mutant which had a defect in two distinct high-affinity sulfate transporters were used in this study. Growth parameters, biochemical or zymological indexes and S assimilation-related genes' expression were compared between the mutant and wild-type Arabidopsis plants. It was found that the mutations of SULTR1;1 and SULTR1;2 did not affect Cd accumulation. Compared to the wild-type, the double mutant was more sensitive to Cd under limited sulfate supply and suffered from stronger oxidative damage. More importantly, under the same condition, lower capacity of S assimilation resulted in decreased GSH content in mutant. Faced to the limited GSH accumulation, mutant seedlings consumed a large majority of GSH in pool for the synthesis of phytochelatins rather than participating in the antioxidative defense. Therefore, homeostasis of GSH, imbalance between antioxidative defense and severe oxidative damage led to hypersensitivity of double mutant to Cd under limited sulfate supply.
Collapse
Affiliation(s)
- Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Fei-Hua Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
- Colleges of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Jing-Xi Li
- Marine Ecology Research Center, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, Shandong, People's Republic of China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Guang-Hui Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Wen-Hua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361005, Fujian, People's Republic of China
| | - Wen-Jun Hu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, Zhejiang, People's Republic of China
| | - Li-Jie Gao
- Marine Ecology Research Center, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, Shandong, People's Republic of China
| | - Zong-Ling Wang
- Marine Ecology Research Center, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, Shandong, People's Republic of China
| | - Jun-Hui Chen
- Marine Ecology Research Center, First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, Shandong, People's Republic of China
| | - Martin Simon
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
7
|
Yin G, Xin X, Song C, Chen X, Zhang J, Wu S, Li R, Liu X, Lu X. Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:1-9. [PMID: 24705135 DOI: 10.1016/j.plaphy.2014.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/06/2014] [Indexed: 05/07/2023]
Abstract
Reactive oxygen species are the main contributors to seed deterioration. In order to study scavenging systems for reactive oxygen species in aged seed, we performed analyses using western blotting, real-time quantitative reverse-transcription polymerase chain reaction, high-performance liquid chromatography, and antioxidant enzyme activity analyses in artificially aged rice seeds (Oryza sativa L. cv. wanhua no.11). Aging seeds by storing them at 50 °C for 1, 9, or 17 months increased the superoxide radical and hydrogen peroxide levels and reduced the germination percentage from 99% to 92%, 55%, and 2%, respectively. The activity levels of superoxide dismutase (SOD), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) did not change in aged seeds. In contrast, the activity levels of catalase (CAT), ascorbate peroxidase (APX), and monodehydroascorbate reductase (MDHAR) were significantly decreased in aged seeds, as were the expression of catalase and cytosolic ascorbate peroxidase protein. Transcript accumulation analysis showed that specific expression patterns were complex for each of the antioxidant enzyme types in the rice embryos. Overall, the expression of most genes was down-regulated, along with their protein expression. In addition, the reduction in the amount of ascorbate and glutathione was associated with the reduction in scavenging enzymes activity in aged rice embryos. Our data suggest that the depression of the antioxidant system, especially the reduction in the expression of CAT1, APX1 and MDHAR1, may be responsible for the accumulation of reactive oxygen species in artificially aged seed embryos, leading to a loss of seed vigor.
Collapse
Affiliation(s)
- Guangkun Yin
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Xin
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Song
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoling Chen
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinmei Zhang
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuhua Wu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruifang Li
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxiong Lu
- National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Radeva V, Petrov V, Minkov I, Toneva V, Gechev T. Effect of Cadmium onArabidopsis ThalianaMutants Tolerant to Oxidative Stress. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2010.10817823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
9
|
Mu C, Zhang S, Yu G, Chen N, Li X, Liu H. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One 2013; 8:e82264. [PMID: 24349240 PMCID: PMC3862632 DOI: 10.1371/journal.pone.0082264] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
Small heat shock proteins (smHSPs) play important and extensive roles in plant defenses against abiotic stresses. We cloned a gene for a smHSP from the David Lily (Lilium davidii (E. H. Wilson) Raffill var. Willmottiae), which we named LimHSP16.45 based on its protein molecular weight. Its expression was induced by many kinds of abiotic stresses in both the lily and transgenic plants of Arabidopsis. Heterologous expression enhanced cell viability of the latter under high temperatures, high salt, and oxidative stress, and heat shock granules (HSGs) formed under heat or salinity treatment. Assays of enzymes showed that LimHSP16.45 overexpression was related to greater activity by superoxide dismutase and catalase in transgenic lines. Therefore, we conclude that heterologous expression can protect plants against abiotic stresses by preventing irreversible protein aggregation, and by scavenging cellular reactive oxygen species.
Collapse
Affiliation(s)
- Changjun Mu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Shijia Zhang
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Guanzhong Yu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Ni Chen
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Xiaofeng Li
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Heng Liu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
- * E-mail:
| |
Collapse
|
10
|
Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2012. [PMID: 0 DOI: 10.1016/j.envexpbot.2012.04.006] [Citation(s) in RCA: 620] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
11
|
Iannone MF, Rosales EP, Groppa MD, Benavides MP. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf discs exposed to paraquat. Biol Trace Elem Res 2012; 146:246-55. [PMID: 22101472 DOI: 10.1007/s12011-011-9244-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
In the present work, the response of tobacco (Nicotiana tabaccum L.) wild-type SR1 and transgenic CAT1AS plants (with a basal reduced CAT activity) was evaluated after exposure to the herbicide paraquat (PQ). Superoxide anion (O (2) (.-) ) formation was inhibited at 3 or 21 h of exposure, but H(2)O(2) production and ion leakage increased significantly, both in SR1 or CAT1AS leaf discs. NADPH oxidase activity was constitutively 57% lower in non-treated transgenic leaves than in SR1 leaves and was greatly reduced both at 3 or 21 h of PQ treatment. Superoxide dismutase (SOD) activity was significantly reduced by PQ after 21 h, showing a decrease from 70% to 55%, whereas catalase (CAT) activity decreased an average of 50% after 3 h of treatment, and of 90% after 21 h, in SR1 and CAT1AS, respectively. Concomitantly, total CAT protein content was shown to be reduced in non-treated CAT1AS plants compared to control SR1 leaf discs at both exposure times. PQ decreased CAT expression in SR1 or CAT1AS plants at 3 and 21 h of treatment. The mechanisms underlying PQ-induced cell death were possibly not related exclusively to ROS formation and oxidative stress in tobacco wild-type or transgenic plants.
Collapse
Affiliation(s)
- María Florencia Iannone
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
12
|
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:909-30. [PMID: 20870416 DOI: 10.1016/j.plaphy.2010.08.016] [Citation(s) in RCA: 4742] [Impact Index Per Article: 316.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/11/2010] [Accepted: 08/28/2010] [Indexed: 05/18/2023]
Abstract
Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
13
|
Iannone MF, Rosales EP, Groppa MD, Benavides MP. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. PROTOPLASMA 2010; 245:15-27. [PMID: 20052507 DOI: 10.1007/s00709-009-0097-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/03/2009] [Indexed: 05/18/2023]
Abstract
The physiological responses of tobacco (Nicotiana tabacum L.) to oxidative stress induced by cadmium were examined with respect to reactive oxygen species (ROS) formation, antioxidant enzymes activities, and cell death appearance in wild-type SR1 and catalase-deficient CAT1AS plants. Leaf disks treated with 100 or 500 microM CdCl(2) increased Evans blue staining and leakage of electrolytes in SR1 or CAT1AS plants, more pronouncedly in the transgenic cultivar, but without evidence of lipid peroxidation in any of the cultivars compared to controls. Cadmium significantly reduced the NADPH oxidase-dependent O (2)(-) formation in a dose dependent manner in SR1 very strongly at 500 microM (to 5% of the activity in the nontreated SR1 leaf disks). In CAT1AS, the NADPH oxidase activity was constitutively reduced at 50% with respect to that of SR1, but the magnitude of the decay was less prominent in this cultivar, reaching an average of 64% of the C at 21 h, for both Cd concentrations. Hydrogen peroxide formation was only slightly increased in SR1 or CAT1AS leaf disks at 21 h of exposure compared to the respective controls. Cd increased superoxide dismutase activity more than six times at 21 h in CAT1AS, but not in SR1 and reduced catalase activity by 59% at 21 h of treatment only in SR1 plants. Despite that catalase expression was constitutively lower in CATAS1 compared to SR1 nontreated leaf disks, 500 microM CdCl(2) almost doubled it only in CAT1AS at 21 h. The mechanisms underlying Cd-induced cell death were possibly not related exclusively to ROS formation or detoxification in tobacco SR1 or CAT1AS plants.
Collapse
Affiliation(s)
- María Florencia Iannone
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Martínez Domínguez D, Córdoba García F, Canalejo Raya A, Torronteras Santiago R. Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora. PHYSIOLOGIA PLANTARUM 2010; 139:289-302. [PMID: 20210872 DOI: 10.1111/j.1399-3054.2010.01368.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Spartina densiflora is an invasive cordgrass that is colonizing new habitats and ousting indigenous species in pro-oxidative environments like cadmium-polluted salt marshes in the Odiel estuary (Spain). The aim of our study was to characterize its antioxidative system in order to find out if the system underlies the tolerance of S. densiflora to cadmium toxicity. S. densiflora plants were firstly evaluated to ascertain its antioxidative status in the natural habitat and then they were cultured in the laboratory in unpolluted sand for 28 days. Throughout this period, plants acclimatized and oxidative stress markers reached stable low levels. Then, S. densiflora plants were exposed to cadmium concentrations (10, 100 and 1000 microM Cd) for another 28 days. Higher Cd content in leaves was related to higher level of reactive oxygen species (ROS) causing important oxidative cell damage (lipid peroxidation and lower chlorophyll content). However, S. densiflora possesses a well-organized and appropriately modulated antioxidative defense system which comprises enzymatic activities of guaiacol peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11) and superoxide dismutase (EC 1.15.1.1) coupled with the activation of the ascorbate cycle, including enzymatic activities of glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1) and monodehydroascorbate reductase (EC 1.6.5.4). This activation was sufficient to reduce Cd-induced ROS accumulation and oxidative damage caused by the lowest Cd-concentrations, but not by the highest Cd-concentration (1000 microM). Nevertheless, the antioxidant system seems to be efficient to achieve a tolerance to cadmium toxicity, allowing normal plant development, even at the presence of highest Cd concentration.
Collapse
Affiliation(s)
- David Martínez Domínguez
- Department of Environmental Biology and Public Health, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | | | | | | |
Collapse
|
15
|
Purev M, Kim YJ, Kim MK, Pulla RK, Yang DC. Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:451-460. [PMID: 20347322 DOI: 10.1016/j.plaphy.2010.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 01/12/2010] [Accepted: 02/15/2010] [Indexed: 05/29/2023]
Abstract
A cDNA clone containing a catalase (CAT1) gene, designated PgCat1, was isolated from Panax ginseng C.A. Meyer (Korean ginseng). PgCat1 is predicted to encode a precursor protein of 492 amino acid residues, and its sequence shares high degrees of homology with a number of other CAT1s. Genomic DNA hybridization analysis indicated that PgCat1 represents a multi-gene family. Reverse transcriptase (RT)-PCR results showed that PgCat1 expressed at different levels in leaves, stem, roots of P. ginseng seedlings. Different stresses, heavy metals, plant hormones, osmotic agents, high light irradiance, abiotic stresses, triggered a significant induction of PgCat1. The positive responses of PgCat1 to the various stimuli suggested that P. ginseng PgCat1 may help to protect the plant against reactive oxidant related environmental stresses.
Collapse
Affiliation(s)
- Munkhbaatar Purev
- Dept. of Oriental Medicinal Material and Processing, College of Life science, Kyung Hee University, 1 Seocheon, Giheung-gu Yongin-si, Gyeonggi-do 449-701, Republic of Korea
| | | | | | | | | |
Collapse
|
16
|
Guan Z, Chai T, Zhang Y, Xu J, Wei W. Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. CHEMOSPHERE 2009; 76:623-30. [PMID: 19473687 DOI: 10.1016/j.chemosphere.2009.04.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 05/27/2023]
Abstract
Catalase (CAT), an important enzyme of antioxidant system, was investigated the role in preventing the plant from Cd-induced oxidative stress caused by reactive oxygen species. A CAT gene from Brassica juncea was cloned and up-regulated in response to Cd/Zn. The CAT cDNA (BjCAT3) under the control of CaMV35S promoter was introduced into tobacco via Agrobacterium-mediated transformation. Northern blot analysis verified the BjCAT3 was expressed at high level in different transgenic lines. In morphological observation, we found that seedlings from transgenic tobacco plants grew better and showed longer root length in the presence of Cd versus wild-type (WT) seedlings. Under 100 microM Cd stress, WT plants became chlorotic and almost dead while transgenic tobacco plants still remained green and phenotypically normal. The CAT activity of transgenic T(1) generations was approximately two-fold higher than that of WT plants. In WT, endogenous CAT activity is rapidly reduced as a result of 200 microM CdCl2 exposure. Compared with WT plants, lower level of Cd-induced H2O2 accumulation and cell death were detected in roots of transgenic plants with high level of CAT activity. All our findings strongly support that overexpressing BjCAT3 in tobacco could enhance the tolerance under Cd stress.
Collapse
Affiliation(s)
- Ziqiu Guan
- College of Life Science, Graduate University of Chinese Academy of Sciences, Yuquan Rd. 19A, Beijing 100049, China
| | | | | | | | | |
Collapse
|
17
|
Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. PLANT PHYSIOLOGY 2009; 150:229-43. [PMID: 19279198 PMCID: PMC2675729 DOI: 10.1104/pp.108.131524] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/08/2009] [Indexed: 05/17/2023]
Abstract
Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 mum CdCl(2) affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO.
Collapse
Affiliation(s)
- María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Reactive Oxygen Species and Signaling in Cadmium Toxicity. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Gene manipulation of a heavy metal hyperaccumulator species Thlaspi caerulescens L. via Agrobacterium-mediated transformation. Mol Biotechnol 2008; 40:77-86. [PMID: 18427996 DOI: 10.1007/s12033-008-9065-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
Thlaspi caerulescens L. is well known as a Zn/Cd hyperaccumulator. The genetic manipulation of T. caerulescens through transgenic technology can modify plant features for use in phytoremediation. Here, we describe the efficient transformation of T. caerulescens using Agrobacterium tumefaciens strain EHA105 harboring a binary vector pBI121 with the nptII gene as a selectable marker, the gus gene as a reporter and a foreign catalase gene. Based on the optimal concentration of growth regulators, the shoot cluster regeneration system via callus phase provided the basis of the genetic transformation in T. caerulescens. The key variables in transformation were examined, such as co-cultivation period and bacterial suspension density. Optimizing factors for T-DNA delivery resulted in kanamycin-resistant transgenic shoots with transformation efficiency more than 20%, proven by histochemical GUS assay and PCR analysis. Southern analysis of nptII and RT-PCR of catalase gene demonstrated that the foreign genes were integrated in the genome of transformed plantlets. Moreover, the activity of catalase enzyme in transgenic plants was obviously higher than in wild-type plants. This method offers new prospects for the genetic engineering of this important hyperaccumulator species.
Collapse
|