1
|
Mierziak J, Wojtasik W, Kulma A, Żuk M, Grajzer M, Boba A, Dymińska L, Hanuza J, Szperlik J, Szopa J. Overexpression of Bacterial Beta-Ketothiolase Improves Flax (Linum usitatissimum L.) Retting and Changes the Fibre Properties. Metabolites 2023; 13:metabo13030437. [PMID: 36984877 PMCID: PMC10052753 DOI: 10.3390/metabo13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Beta-ketothiolases are involved in the beta-oxidation of fatty acids and the metabolism of hormones, benzenoids, and hydroxybutyrate. The expression of bacterial beta-ketothiolase in flax (Linum usitatissimum L.) results in an increase in endogenous beta-ketothiolase mRNA levels and beta-hydroxybutyrate content. In the present work, the effect of overexpression of beta-ketothiolase on retting and stem and fibre composition of flax plants is presented. The content of the components was evaluated by high-performance liquid chromatography, gas chromatography–mass spectrometry, Fourier-transform infrared spectroscopy, and biochemical methods. Changes in the stem cell walls, especially in the lower lignin and pectin content, resulted in more efficient retting. The overexpression of beta-ketothiolase reduced the fatty acid and carotenoid contents in flax and affected the distribution of phenolic compounds between free and cell wall-bound components. The obtained fibres were characterized by a slightly lower content of phenolic compounds and changes in the composition of the cell wall. Based on the IR analysis, we concluded that the production of hydroxybutyrate reduced the cellulose crystallinity and led to the formation of shorter but more flexible cellulose chains, while not changing the content of the cell wall components. We speculate that the changes in chemical composition of the stems and fibres are the result of the regulatory properties of hydroxybutyrate. This provides us with a novel way to influence metabolic composition in agriculturally important crops.
Collapse
Affiliation(s)
- Justyna Mierziak
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
| | - Wioleta Wojtasik
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
- Correspondence:
| | - Anna Kulma
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
| | - Magdalena Żuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
| | - Magdalena Grajzer
- Department of Dietetics and Bromatology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Aleksandra Boba
- Department of Genetics, Plant Breeding and Seed Science, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24A, 50-363 Wroclaw, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| | - Jerzy Hanuza
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - Jakub Szperlik
- Laboratory of Tissue Culture, Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland
| | - Jan Szopa
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Przybyszewskiego Str. 63, 51-148 Wroclaw, Poland
| |
Collapse
|
2
|
Mierziak J, Burgberger M, Wojtasik W. 3-Hydroxybutyrate as a Metabolite and a Signal Molecule Regulating Processes of Living Organisms. Biomolecules 2021; 11:biom11030402. [PMID: 33803253 PMCID: PMC8000602 DOI: 10.3390/biom11030402] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
3-hydroxybutyrate (3-HB) as a very important metabolite occurs in animals, bacteria and plants. It is well known that in animals, 3-HB is formed as a product of the normal metabolism of fatty acid oxidation and can therefore be used as an energy source in the absence of sufficient blood glucose. In microorganisms, 3-HB mainly serves as a substrate for the synthesis of polyhydroxybutyrate, which is a reserve material. Recent studies show that in plants, 3-HB acts as a regulatory molecule that most likely influences the expression of genes involved in DNA methylation, thereby altering DNA methylation levels. Additionally, in animals, 3-HB is not only an intermediate metabolite, but also an important regulatory molecule that can influence gene expression, lipid metabolism, neuronal function, and overall metabolic rate. Some of these effects are the direct effects of 3-HB itself, while others are indirect effects, regulated by the metabolites into which 3-HB is converted. One of the most important regulatory functions of 3-HB is the inhibition of the activity of histone deacetylases and thus the epigenetic regulation of many genes. Due to the number of functions of this compound, it also shows promising therapeutic properties.
Collapse
|
3
|
Tsuda H, Shiraki M, Inoue E, Saito T. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:9-16. [PMID: 27372278 DOI: 10.1016/j.jplph.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination.
Collapse
Affiliation(s)
- Hirohisa Tsuda
- Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 Japan.
| | - Mari Shiraki
- Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 Japan.
| | - Eri Inoue
- Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 Japan.
| | - Terumi Saito
- Laboratory of Molecular Microbiology, Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 Japan.
| |
Collapse
|