1
|
Pestana M, Saavedra T, Gama F, Rodrigues MA, de Varennes A, Da Silva JP, Correia PJ. Quercetin promotes the recovery of iron chlorosis in strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109266. [PMID: 39515002 DOI: 10.1016/j.plaphy.2024.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Iron (Fe) chlorosis is very common in plants cultivated in calcareous soils of the Mediterranean basin and is usually corrected by the application of Fe chelates to the soil, which can have a negative impact on the environment. The aim of this experiment was to assess the role of quercetin, a natural compound widely present in plants and known to bind Fe, in correcting Fe chlorosis when supplied in the Hoagland nutrient solution. In this context, strawberry plants were grown at different Fe concentrations, with 0 (Fe0), 1 (Fe1) and 5 (Fe5) μM of Fe in the nutrient solution, until the onset of clear Fe chlorosis symptoms. Subsequently, the recovery of Fe chlorosis was investigated through the addition of Fe and/or quercetin (Q) to nutrient solutions. Throughout the experiment, leaf chlorophyll (Chl) was estimated using the SPAD values. The root ferric chelate-reductase (FCR) activity was determined in the root apices, and the foliar Fe concentration was also quantified. At the end of the experiment, plants grown without Fe but supplemented with Fe1 plus quercetin [Fe0+(Fe1+Q)] recovered completely from Fe chlorosis and showed a Chl concentration (700-800 μmol m-2) in young leaves similar to that observed in control plants (Fe5). The remaining treatments exhibited lower Chl concentrations, with values ranging from 92.4 to 217.0 μmol of Chl per m2. FCR activity was approximately five-to six-fold higher in the Fe0+(Fe1+Q) treatment than in the Fe0 and Fe5 treatments. However, the plants that were consistently grown with Fe in the nutrient solution (Fe1 and Fe5) exhibited the highest Fe content in their leaves. The findings suggest that quercetin has the potential to function as an Fe complexing agent, thereby enhancing the recovery of strawberry plants with Fe deficiency.
Collapse
Affiliation(s)
- Maribela Pestana
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Teresa Saavedra
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Building 7, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Florinda Gama
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Building 7, Campus of Gambelas, 8005-139, Faro, Portugal; GreenCoLab - Associação Oceano Verde, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | | | - Amarilis de Varennes
- Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José Paulo Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Building 7, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Pedro José Correia
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
2
|
Arcas A, López-Rayo S, Gárate A, Lucena JJ. A Critical Review of Methodologies for Evaluating Iron Fertilizers Based on Iron Reduction and Uptake by Strategy I Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:819. [PMID: 38592963 PMCID: PMC10975526 DOI: 10.3390/plants13060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Under iron (Fe)-limited conditions, plants have developed strategies for acquiring this essential micronutrient. Several Fe sources have been studied as potential fertilizers, with Fe synthetic chelates being the most used to prevent and correct Fe chlorosis in crops. The determination of the activity of the Fe chelate reductase (FCR) enzyme has long been described in the literature to understand the efficiency of Strategy I plants in acquiring Fe from fertilizers under deficient conditions. Other experiments have focused on the translocation of Fe to the plant to define the effectiveness of Fe fertilizers. Yet, both assays are relevant in knowing the capacity of a novel Fe source and other compounds alleviating Fe chlorosis in Strategy I plants. This work reviews the methodologies that are used in FCR assays to evaluate novel Fe fertilizers, including the factors modulating the results obtained for FCR assay activity, such as the Fe substrate, the Fe level during the growing period and during the FCR assay, the pH, the choice of an in vivo or in vitro method, and the plant species. A discussion of the benefits of the concurrence of FCR and Fe uptake assays is then presented alongside a proposed methodology for assessing the effectiveness of Fe fertilizers, emphasizing the importance of understanding chemical and physiological plant interactions. This methodology unifies key factors that modify FCR activity and combines these with the use of the 57Fe tracer to enhance our comprehension of the efficacy of Fe-based fertilizers' effectiveness in alleviating Fe chlorosis. This comprehensive approach not only contributes to the fundamental understanding of Fe-deficient Strategy I plants but also establishes a robust method for determining the efficiency of novel sources for correcting Fe deficiency in plants.
Collapse
Affiliation(s)
| | | | | | - Juan J. Lucena
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.A.); (S.L.-R.); (A.G.)
| |
Collapse
|
3
|
Saavedra T, Gama F, Rodrigues MA, Abadía J, de Varennes A, Pestana M, Da Silva JP, Correia PJ. Effects of foliar application of organic acids on strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:12-20. [PMID: 35963050 DOI: 10.1016/j.plaphy.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The large economic costs and environmental impacts of iron-chelate treatments has led to the search for alternative methods and compounds to control iron (Fe) deficiency chlorosis. Strawberry plants (Fragaria x ananassa) were grown in Hoagland's nutrient solution in a greenhouse with two levels of Fe: 0 and 10 μM Fe(III)-EDDHA. After 20 days, plants growing without Fe showed typical symptoms of Fe deficiency chlorosis in young leaves. Then, the adaxial and abaxial sides of one mature or one young leaf in each plant were brushed with 10 mM malic (MA), citric (CA) or succinic (SA) acids. Eight applications were done over a two-week period. At the end of the experiment, the newly emerged (therefore untreated), young and mature leaves were sampled for nutritional and metabolomic analysis, to assess the effectiveness of treatments. Leaf regreening was monitored using a SPAD-502 apparatus, and the activity of the ferric chelate-reductase activity (FCR) was measured using root tips. Iron deficiency negatively affected biomass and leaf chlorophyll but did not increase FCR activity. Application of succinic acid alleviated the decrease in chlorophyll observed in other treatments, and the overall nutritional balance in the plant was also changed. The concentrations of two quinic acid derivatives increased under Fe deficiency and decreased in plants treated with succinic acid, and thus they are proposed as Fe stress markers. Data suggest that foliage treatments with carboxylates may be, in some cases, environmentally friendly alternatives to Fe(III)-chelates. The importance of Fe mobilization pathways in the formulation of new fertilizers is also discussed.
Collapse
Affiliation(s)
- Teresa Saavedra
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Florinda Gama
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Maria A Rodrigues
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Javier Abadía
- Estación Experimental de Aula Dei, CSIC, Plant Biology Department, Av. Montañana 1005, Zaragoza, E-50059, Spain
| | - Amarilis de Varennes
- Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Maribela Pestana
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - José Paulo Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Pedro José Correia
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
4
|
Hernandez-Apaolaza L. Priming With Silicon: A Review of a Promising Tool to Improve Micronutrient Deficiency Symptoms. FRONTIERS IN PLANT SCIENCE 2022; 13:840770. [PMID: 35300007 PMCID: PMC8921768 DOI: 10.3389/fpls.2022.840770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 05/24/2023]
Abstract
Priming consists of a short pretreatment or preconditioning of seeds or seedlings with different types of primers (biological, chemical, or physical), which activates various mechanisms that improve plant vigor. In addition, stress responses are also upregulated with priming, obtaining plant phenotypes more tolerant to stress. As priming is thought to create a memory in plants, it is impairing a better resilience against stress situations. In today's world and due to climatic change, almost all plants encounter stresses with different severity. Lots of these stresses are relevant to biotic phenomena, but lots of them are also relevant to abiotic ones. In both these two conditions, silicon application has strong and positive effects when used as a priming agent. Several Si seed priming experiments have been performed to cope with several abiotic stresses (drought, salinity, alkaline stress), and Si primers have been used in non-stress situations to increase seed or seedlings vigor, but few has been done in the field of plant recovery with Si after a stress situation, although promising results have been referenced in the scarce literature. This review pointed out that Si could be successfully used in seed priming under optimal conditions (increased seed vigor), to cope with several stresses and also to recover plants from stressful situations more rapidly, and open a promising research topic to investigate, as priming is not an expensive technique and is easy to introduce by growers.
Collapse
|
5
|
Wala M, Kołodziejek J, Mazur J, Cienkowska A. Reactions of two xeric-congeneric species of Centaurea (Asteraceae) to soils with different pH values and iron availability. PeerJ 2021; 9:e12417. [PMID: 34824914 PMCID: PMC8590394 DOI: 10.7717/peerj.12417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
Centaurea scabiosa L. and C. stoebe Tausch are known to co-exist naturally in two extremely different types of open dry habitats in the temperate zone, alkaline xerothermic grasslands and acidic dry grasslands. However, knowledge about their preferences to edaphic conditions, including soil acidity (pH), and iron (Fe) availability is scarce. Therefore, experimental comparison of soil requirements (acidic Podzol vs alkaline Rendzina) of these species was carried out. The study was designed as a pot experiment and conducted under field conditions. Fe availability was increased by application of Fe-HBED. Reactions of plants to edaphic conditions were determined using growth measurements, leaf morphometric measurements, chlorosis scoring, chlorophyll content and chlorophyll a fluorescence (OJIP) quantification as well as determination of element content (Ca, Mg, Fe, Mn, Zn and Cu). Growth and leaf morphometrical traits of the studied congeneric species were affected similarly by the soil type and differently by the chelate treatment. Increased availability of Fe in Rendzina contrasted the species, as treatment with 25 µmol Fe-HBED kg−1 soil promoted growth only in C. stoebe. Both species turned out to be resistant to Fe-dependent chlorosis which was also reflected in only minor changes in chlorophyll a fluorescence parameters. Both species showed relatively low nutritional demands. Surprisingly, Fe-HBED did not stimulate Fe acquisition in the studied species, nor its translocation along the root:shoot axis. Furthermore, contrary to expectations, C. scabiosa took up less Fe from the acidic than alkaline soil. C. scabiosa not only absorbed more Ca and Zn but also translocated greater amounts of these elements to shoots than C. stoebe. Both species acquired more Mg on Podzol than on Rendzina which suggests adaptation allowing avoidance of aluminum (Al) toxicity on acidic soils. Overall, it seems that C. scabiosa prefers alkaline soils, whilst C. stoebe prefers acidic ones.
Collapse
Affiliation(s)
- Mateusz Wala
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Łódź Voivodeship, Poland
| | - Jeremi Kołodziejek
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Łódź Voivodeship, Poland
| | - Janusz Mazur
- Laboratory of Computer and Analytical Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Łódź Voivodeship, Poland
| | | |
Collapse
|
6
|
Short Term Elevated CO2 Interacts with Iron Deficiency, Further Repressing Growth, Photosynthesis and Mineral Accumulation in Soybean (Glycine max L.) and Common Bean (Phaseolus vulgaris L.). ENVIRONMENTS 2021. [DOI: 10.3390/environments8110122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elevated CO2 (eCO2) has been reported to cause mineral losses in several important food crops such as soybean (Glycine max L.) and common bean (Phaseolus vulgaris L.). In addition, more than 30% of the world’s arable land is calcareous, leading to iron (Fe) deficiency chlorosis and lower Fe levels in plant tissues. We hypothesize that there will be combinatorial effects of eCO2 and Fe deficiency on the mineral dynamics of these crops at a morphological, biochemical and physiological level. To test this hypothesis, plants were grown hydroponically under Fe sufficiency (20 μM Fe-EDDHA) or deficiency (0 μM Fe-EDDHA) at ambient CO2 (aCO2, 400 ppm) or eCO2 (800 ppm). Plants of both species exposed to eCO2 and Fe deficiency showed the lowest biomass accumulation and the lowest root: shoot ratio. Soybean at eCO2 had significantly higher chlorophyll levels (81%, p < 0.0001) and common bean had significantly higher photosynthetic rates (60%, p < 0.05) but only under Fe sufficiency. In addition, eCO2 increased ferric chelate reductase acivity (FCR) in Fe-sufficient soybean by 4-fold (p < 0.1) and in Fe-deficient common bean plants by 10-fold (p < 0.0001). In common bean, an interactive effect of both environmental factors was observed, resulting in the lowest root Fe levels. The lowering of Fe accumulation in both crops under eCO2 may be linked to the low root citrate accumulation in these plants when grown with unrestricted Fe supply. No changes were observed for malate in soybean, but in common bean, shoot levels were significantly lower under Fe deficiency (77%, p < 0.05) and Fe sufficiency (98%, p < 0.001). These results suggest that the mechanisms involved in reduced Fe accumulation caused by eCO2 and Fe deficiency may not be independent, and an interaction of these factors may lead to further reduced Fe levels.
Collapse
|
7
|
Ling Y, Mahfouz MM, Zhou S. Pre-mRNA alternative splicing as a modulator for heat stress response in plants. TRENDS IN PLANT SCIENCE 2021; 26:1153-1170. [PMID: 34334317 DOI: 10.1016/j.tplants.2021.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 05/11/2023]
Abstract
The molecular responses of plants to the important abiotic stress, heat stress (HS), have been extensively studied at the transcriptional level. Alternative splicing (AS) is a post-transcriptional regulatory process in which an intron-containing gene can generate more than one mRNA variant. The impact of HS on the pre-mRNA splicing process has been reported in various eukaryotes but seldom discussed in-depth, especially in plants. Here, we review AS regulation in response to HS in different plant species. We discuss potential molecular mechanisms controlling heat-inducible AS regulation in plants and hypothesize that AS regulation participates in heat-priming establishment and HS memory maintenance. We propose that the pre-mRNA splicing variation is an important regulator of plant HS responses (HSRs).
Collapse
Affiliation(s)
- Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China; Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, PR China.
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Shuangxi Zhou
- New Zealand Institute for Plant and Food Research Limited, Hawke's Bay 4130, New Zealand
| |
Collapse
|
8
|
Banerjee A, Roychoudhury A. Maghemite nano-fertilization promotes fluoride tolerance in rice by restoring grain yield and modulating the ionome and physiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112055. [PMID: 33765592 DOI: 10.1016/j.ecoenv.2021.112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The present manuscript elucidated the ameliorative potential of nano-maghemite (FeNPs) against the hazardous effects of fluoride toxicity in the sensitive rice cultivar, IR-64. Fluoride pollution triggered bioaccumulation in root, shoot and spikelets which inhibited reproduction, agronomic development and mineral uptake. Suppressed activity of enzymatic antioxidants and excessive cobalt translocation manifested severe ROS-induced oxidative injuries. Seedling priming with FeNPs reduced fluoride bioaccumulation and promoted efficient uptake of macroelements and micronutrients like potassium, calcium, iron, zinc, copper, nickel, manganese, selenium and vanadium and reduced the translocation of cobalt in mature seedlings during stress. This altogether triggered growth and activated the enzymes like SOD, CAT, APX and GPOX. High accumulation of non-enzymatic antioxidants like proline, anthocyanins, flavonoids, phenolics along with stimulated GSH synthesis (determined from high GR, GST and GPX activity) and glyoxalase activity enabled FeNP-pulsed plants to efficiently scavenge ROS, O2-, H2O2 and methylglyoxal, and mitigate oxidative injuries. The ROS production was also lowered due to suppressed NADPH oxidase activity. This ensured subsequent revitalization of Hill activity and the level of photosynthetic pigments. Due to reduced fluoride partitioning and improved nutritional sink, the grain and panicle development in FeNP-primed, stressed seedlings were more stimulated than even control sets. Overall, our findings supported by statistical modelling established the potential of iron-nanotechnology in promoting safe rice cultivation even in fluoride-polluted environments.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India.
| |
Collapse
|
9
|
Bai Q, Shen Y, Huang Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:620018. [PMID: 33692815 PMCID: PMC7937644 DOI: 10.3389/fpls.2021.620018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 05/12/2023]
Abstract
Mineral nutrition, taken up from the soil or foliar sprayed, plays fundamental roles in plant growth and development. Among of at least 14 mineral elements, the macronutrients nitrogen (N), potassium (K), phosphorus (P), and calcium (Ca) and the micronutrient iron (Fe) are essential to Rosaceae fruit yield and quality. Deficiencies in minerals strongly affect metabolism with subsequent impacts on the growth and development of fruit trees. This ultimately affects the yield, nutritional value, and quality of fruit. Especially, the main reason of the postharvest storage loss caused by physiological disorders is the improper proportion of mineral nutrient elements. In recent years, many important mineral transport proteins and their regulatory components are increasingly revealed, which make drastic progress in understanding the molecular mechanisms for mineral nutrition (N, P, K, Ca, and Fe) in various aspects including plant growth, fruit development, quality, nutrition, and postharvest storage. Importantly, many studies have found that mineral nutrition, such as N, P, and Fe, not only affects fruit quality directly but also influences the absorption and the content of other nutrient elements. In this review, we provide insights of the mineral nutrients into their function, transport, signal transduction associated with Rosaceae fruit quality, and postharvest storage at physiological and molecular levels. These studies will contribute to provide theoretical basis to improve fertilizer efficient utilization and fruit industry sustainable development.
Collapse
|
10
|
Rahimi S, Talebi M, Baninasab B, Gholami M, Zarei M, Shariatmadari H. The role of plant growth-promoting rhizobacteria (PGPR) in improving iron acquisition by altering physiological and molecular responses in quince seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:406-415. [PMID: 32814277 DOI: 10.1016/j.plaphy.2020.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 05/08/2023]
Abstract
Due to insoluble iron (Fe) sources in soil, limited Fe availability leads to the disruption of the photosynthetic apparatus; this affects the growth and productivity of plants such as quince (Cydonia oblonga) that are very sensitive to low Fe content. Plant growth-promoting rhizobacteria (PGPR) play an important role in the regulation of Fe uptake under its limited availability. Therefore, in this research, two PGPR (Pseudomonas fluorescens and Microccucuce yunnanensis), at two Fe levels [50 μM (Fe-sufficiency) or 5 μM (Fe-deficiency)], were used to investigate the impact of the given bacteria on improving the acquisition of Fe in quince seedlings. Upon Fe-deficiency, the highest shoot and root biomass (7.14 and 6.04 g plant-1 respectively), the greatest chlorophyll concentration (0.89 mg g-1FW), and the largest Fe concentrations in roots and shoots (30% and 48.7%, respectively) were shown in the quince treated with M. yunnanensis. Both PGPR increased the root citric acid and the phenolic compound concentration. Two days after Fe-deficiency and PGPR treatments, a 1.5- fold increase, was observed in the expression of HA7. The highest PAL1 gene expression and the greatest PAL activity (95.76 μmol cinnamic acid g-1FW) were obtained from the M. yunnanensis treatment. The expression of the FRO2 gene was also affected by Fe-deficiency and PGPR treatments, resulting in an increase in the FCR activity and a surge in the Fe concentrations of leaves and roots. It could, therefore, be concluded that the PGPR modulated Fe acquisition in the quince seedlings upon Fe-deficiency by influencing the physico-chemical and molecular responses.
Collapse
Affiliation(s)
- Sareh Rahimi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Majid Talebi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, 8415683111, Isfahan, Iran.
| | - Bahram Baninasab
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mahdiyeh Gholami
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mehdi Zarei
- Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Hossein Shariatmadari
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, 8415683111, Isfahan, Iran
| |
Collapse
|
11
|
Gama F, Saavedra T, Dandlen S, de Varennes A, Correia PJ, Pestana M, Nolasco G. Silencing of the FRO1 gene and its effects on iron partition in Nicotiana benthamiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:111-118. [PMID: 28285085 DOI: 10.1016/j.plaphy.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 05/01/2023]
Abstract
To evaluate the dynamic role of the ferric-chelate reductase enzyme (FCR) and to identify possible pathways of regulation of its activity in different plant organs an investigation was conducted by virus-induced gene silencing (VIGS) using tobacco rattle virus (TRV) to silence the ferric reductase oxidase gene (FRO1) that encodes the FCR enzyme. Half of Nicotiana benthamiana plants received the VIGS vector and the rest remained as control. Four treatments were imposed: two levels of Fe in the nutrient solution (0 or 2.5 μM of Fe), each one with silenced or non-silenced (VIGS-0; VIGS-2.5) plants. Plants grown without iron (0; VIGS-0) developed typical symptoms of iron deficiency in the youngest leaves. To prove that FRO1 silencing had occurred, resupply of Fe (R) was done by adding 2.5 μM of Fe to the nutrient solution in a subset of chlorotic plants (0-R; VIGS-R). Twelve days after resupply, 0-R plants had recovered from Fe deficiency while plants containing the VIGS vector (VIGS-R) remained chlorotic and both FRO1 gene expression and FCR activity were considerably reduced, consequently preventing Fe uptake. With the VIGS technique we were able to silence the FRO1 gene in N. benthamiana and point out its importance in chlorophyll synthesis and Fe partition.
Collapse
Affiliation(s)
- Florinda Gama
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal.
| | - Teresa Saavedra
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Susana Dandlen
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Amarilis de Varennes
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Pedro J Correia
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Maribela Pestana
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Gustavo Nolasco
- MeditBio - Center for Mediterranean Bioresources and Food, University of Algarve, FCT, Ed8, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|