1
|
Fu M, Liu L, Fu B, Hou M, Xiao Y, Liu Y, Sa D, Lu Q. Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions. FRONTIERS IN PLANT SCIENCE 2025; 15:1516336. [PMID: 39850220 PMCID: PMC11753915 DOI: 10.3389/fpls.2024.1516336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
Introduction Salt stress significantly affects plant growth, and Na+ has gained attention for its potential to enhance plant adaptability to saline conditions. However, the interactions between Na+, plants, and rhizosphere bacterial communities remain unclear, hindering a deeper understanding of how Na+ contributes to plant resilience under salt stress. Methods This study aimed to investigate the mechanisms through which Na+ promotes alfalfa's adaptation to salt stress by modifying rhizosphere bacterial communities. We examined the metabolic activity and community composition of both plant and rhizosphere bacteria under Na+ treatment. Results and discussion Our results revealed significant changes in the metabolism and community composition of both plant and rhizosphere bacteria following Na+ addition. Na+ not only promoted the growth of rhizosphere bacteria but also induced shifts in the plant-associated bacterial community, increasing the abundance of bacterial species linked to alfalfa's resistance to salt stress. Furthermore, the chemical characteristics of alfalfa were strongly correlated with the composition and network complexity of both plant and rhizosphere bacterial communities. These interactions suggest that Na+ plays a crucial role in enhancing alfalfa's adaptability to salt stress by fostering beneficial bacterial communities in the rhizosphere. This finding highlights the potential of leveraging Na+ interactions with plant-microbe systems to improve crop resilience and productivity in saline agricultural environments.
Collapse
Affiliation(s)
- Maoxing Fu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Liying Liu
- Inner Mongolia Autonomous Region Forestry Scientific Research Institute, Hohhot, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Yanzi Xiao
- Agricultural College, Hulun Buir College, Hailar, China
| | - Yinghao Liu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Duowen Sa
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Qiang Lu
- Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Liu X, Elzenga JTM, Venema JH, Tiedge KJ. Thriving in a salty future: morpho-anatomical, physiological and molecular adaptations to salt stress in alfalfa (Medicago sativa L.) and other crops. ANNALS OF BOTANY 2024; 134:1113-1130. [PMID: 39215647 PMCID: PMC11688534 DOI: 10.1093/aob/mcae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND With soil salinity levels rising at an alarming rate, accelerated by climate change and human interventions, there is a growing need for crop varieties that can grow on saline soils. Alfalfa (Medicago sativa) is a cool-season perennial leguminous crop, commonly grown as forage, biofuel feedstock and soil conditioner. It demonstrates significant potential for agricultural circularity and sustainability, for example by fixing nitrogen, sequestering carbon and improving soil structures. Although alfalfa is traditionally regarded as a moderately salt-tolerant species, modern alfalfa varieties display specific salt-tolerance mechanisms, which could be used to pave its role as a leading crop able to grow on saline soils. SCOPE Alfalfa's salt tolerance underlies a large variety of cascading biochemical and physiological mechanisms. These are partly enabled by its complex genome structure and out-crossing nature, but which entail impediments for molecular and genetic studies. This review first summarizes the general effects of salinity on plants and the broad-ranging mechanisms for dealing with salt-induced osmotic stress, ion toxicity and secondary stress. Second, we address the defensive and adaptive strategies that have been described for alfalfa, such as the plasticity of alfalfa's root system, hormonal crosstalk for maintaining ion homeostasis, spatiotemporal specialized metabolite profiles and the protection of alfalfa-rhizobia associations. Finally, bottlenecks for research of the physiological and molecular salt-stress responses as well as biotechnology-driven improvements of salt tolerance are identified and discussed. CONCLUSION Understanding morpho-anatomical, physiological and molecular responses to salinity is essential for the improvement of alfalfa and other crops in saline land reclamation. This review identifies potential breeding targets for enhancing the stability of alfalfa performance and general crop robustness for rising salt levels as well as to promote alfalfa applications in saline land management.
Collapse
Affiliation(s)
- Xu Liu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J Theo M Elzenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Henk Venema
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Kira J Tiedge
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Yang G, Li Z, Rong M, Yu R, Zhang Q, Wang G, Xu Z, Du X, Xu X. Comparative transcriptome analysis to identify the important mRNA and lncRNA associated with salinity tolerance in alfalfa. PeerJ 2024; 12:e18236. [PMID: 39430557 PMCID: PMC11490228 DOI: 10.7717/peerj.18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Salinity represents a fatal factor affecting the productivity of alfalfa. But the regulation of salinity tolerance via lncRNAs and mRNAs remains largely unclear within alfalfa. For evaluating salinity stress resistance-related lncRNAs and mRNAs within alfalfa, we analyzed root transcriptomics in two alfalfa varieties, GN5 (salinity-tolerant) and GN3 (salinity-sensitive), after treatments with NaCl at 0 and 150 mM. There were altogether 117,677 lncRNAs and 172,986 mRNAs detected, including 1,466 lncRNAs and 2,288 mRNAs with significant differential expression in GN5150/GN50, GN3150/GN30, GN50/GN30, and GN5150/GN3150. As revealed by GO as well as KEGG enrichment, some ionic and osmotic stress-associated genes, such as HPCA1-LRR, PP2C60, PP2C71, CRK1, APX3, HXK2, BAG6, and ARF1, had up-regulated levels in GN5 compared with in GN3. In addition, NaCl treatment markedly decreased CNGC1 expression in GN5. According to co-expressed network analyses, six lncRNAs (TCONS_00113549, TCONS_00399794, TCONS_00297228, TCONS_00004647, TCONS_00033214 and TCONS_00285177) modulated 66 genes including ARF1, BAG6, PP2C71, and CNGC1 in alfalfa roots, suggesting that these nine genes and six lncRNAs probably facilitated the different salinity resistance in GN5 vs. GN3. These results shed more lights on molecular mechanisms underlying genotype difference in salinity tolerance among alfalfas.
Collapse
Affiliation(s)
- Gaimei Yang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Zhengyan Li
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Mengru Rong
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiting Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Guoliang Wang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhiming Xu
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xian Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
4
|
Li C, Liu C, Shan Y, Lan T. Effects of low frequency ultrasound treatment on dissolved organic nitrogen removal by biological activated carbon: Critical insights into molecular characteristics, microbial traits, and metabolism. WATER RESEARCH 2024; 260:121924. [PMID: 38896885 DOI: 10.1016/j.watres.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Drinking water treatment plants (DWTPs) in China that pioneered the biological activated carbon (BAC) process have reached 10 years of operation. There has been a renewed focus on biofiltration and the performance of old BAC filters for dissolved organic nitrogen (DON) has been poor, requiring replacement and regeneration of the BAC. Therefore, it is necessary to explore a cost-effective way to improve the water quality of the old BAC filters. To address this, low frequency ultrasound is proposed to enhance DON removal efficiency by BAC. In this study, bench and pilot tests were conducted to investigate the effect of low frequency ultrasound on DON removal by 10-year BAC. The results indicated that low frequency ultrasound significantly improved the DON removal rate increased from 15.83 % to 85.87 % and considerably inhibited the nitrogenous disinfection by-products (N-DBPs) formation potential, which was attributed to a decrease in the production of lipid-like, carbohydrate-like, and protein/amino sugar-like DON. The biomass on the BAC was significantly reduced after ultrasound treatment, and it decreased from 349.56∼388.98 nmol P/gBAC to 310.12∼377.63 nmol P/gBAC, enabling the biofilm thickness to decrease and the surface to become sparse and porous, which was conducive to oxygen and nutrients transfer. The Rhizobials associated with microbe-derived DON were stripped away during ultrasound treatment, which reduced microbe-derived DON associated with amino acids. Additionally, ultrasound regulated metabolic pathways, including amino acids, tricarboxylic acid (TCA) cycle, and nucleotide metabolism, to improve the osmotic pressure of the biofilm. In short, low frequency ultrasound treatment can enhance BAC biological properties and effectively remove DON and N-DBPs formation potentials, which provides a viable and promising strategy for improving the safety of drinking water in practice.
Collapse
Affiliation(s)
- Congcong Li
- College of Environment, Hohai University, Nanjing 210098, PR China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, PR China
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yiwen Shan
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tong Lan
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
5
|
Wilkinson H, Coppock A, Richmond BL, Lagunas B, Gifford ML. Plant-Environment Response Pathway Regulation Uncovered by Investigating Non-Typical Legume Symbiosis and Nodulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1964. [PMID: 37653881 PMCID: PMC10223263 DOI: 10.3390/plants12101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Nitrogen is an essential element needed for plants to survive, and legumes are well known to recruit rhizobia to fix atmospheric nitrogen. In this widely studied symbiosis, legumes develop specific structures on the roots to host specific symbionts. This review explores alternate nodule structures and their functions outside of the more widely studied legume-rhizobial symbiosis, as well as discussing other unusual aspects of nodulation. This includes actinorhizal-Frankia, cycad-cyanobacteria, and the non-legume Parasponia andersonii-rhizobia symbioses. Nodules are also not restricted to the roots, either, with examples found within stems and leaves. Recent research has shown that legume-rhizobia nodulation brings a great many other benefits, some direct and some indirect. Rhizobial symbiosis can lead to modifications in other pathways, including the priming of defence responses, and to modulated or enhanced resistance to biotic and abiotic stress. With so many avenues to explore, this review discusses recent discoveries and highlights future directions in the study of nodulation.
Collapse
Affiliation(s)
- Helen Wilkinson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Alice Coppock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Miriam L. Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
6
|
Li C, Liu C, Feng C, Lan T. Exploring the impacts of service life of biological activated carbon on dissolved organic nitrogen removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121214. [PMID: 36740163 DOI: 10.1016/j.envpol.2023.121214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The biological activated carbon (BAC) process has been widely used in drinking water treatment to improve the removal of pollutants, including the precursors of nitrogenous disinfection byproducts (N-DBPs). Nevertheless, old BAC filter effluent DON concentration is heightened, increasing the highly toxic N-DBPs formation potential. Herein, the variation of dissolved organic nitrogen (DON) was comprehensively explored during one backwashing cycle, focusing on four BAC age (0.3, 2, 5, and 10 years) for BAC filters in drinking water. Comparatively, the removal rate of DON by four BAC followed the order 0.3-yr BAC (39.69%-66.96%) >2-yr BAC (10.10%-39.78%) >5-yr BAC (-4.18%-29.63%)>10-yr BAC (-20.88%-19.87%). When at day 7 after backwashing, 10-yr BAC filter effluent increased at least 13.71% of DON and considerably elevated the N-DBPs formation potential, which was attributed to the ultimate production of more various proteins/amino sugars-like compounds by microbes. In comparisons of microbial community between all BAC samples, Rhizobials were more prevalent in 10-yr BAC and could produce microbe-derived DON associated with amino acids. Moreover, microbes regulated metabolic pathways, including amino acid biosynthesis, TCA cycle, purine metabolism, and pyrimidine metabolism, to enhance the adaptive cellular machinery in response to environmental stressors, and therefore accelerated microbial secretion of microbe-derived DON. Structural equation model (SEM) analysis investigated that BAC age had bio-effects on N-DBPs formation potential, which were delivered via the linkage of " BAC age, microbial community, microbial metabolism, and DON molecular characteristics". Our findings demonstrate the necessity of reconsidering the feasibility of BAC filters for long-time operation, which has implications for future N-DBPs precursors control in drinking water.
Collapse
Affiliation(s)
- Congcong Li
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing, 210098, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China.
| | - Changlong Feng
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tong Lan
- College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
7
|
Liu Y, Liu X, Dong X, Yan J, Xie Z, Luo Y. The effect of Azorhizobium caulinodans ORS571 and γ-aminobutyric acid on salt tolerance of Sesbania rostrata. FRONTIERS IN PLANT SCIENCE 2022; 13:926850. [PMID: 36046585 PMCID: PMC9423025 DOI: 10.3389/fpls.2022.926850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 05/27/2023]
Abstract
Salt stress seriously affects plant growth and crop yield, and has become an important factor that threatens the soil quality worldwide. In recent years, the cultivation of salt-tolerant plants such as Sesbania rostrata has a positive effect on improving coastal saline-alkali land. Microbial inoculation and GABA addition have been shown to enhance the plant tolerance in response to the abiotic stresses, but studies in green manure crops and the revelation of related mechanisms are not clear. In this study, the effects of inoculation with Azorhizobium caulinodans ORS571 and exogenous addition of γ-Aminobutyric Acid (GABA; 200 mg·L-1) on the growth and development of S. rostrata under salt stress were investigated using potting experiments of vermiculite. The results showed that inoculation with ORS571 significantly increased the plant height, biomass, chlorophyll content, proline content (PRO), catalase (CAT) activity, and superoxide dismutase (SOD) activity of S. rostrata and reduced the malondialdehyde (MDA) level of leaves. The exogenous addition of GABA also increased the height, biomass, and CAT activity and reduced the MDA and PRO level of leaves. In addition, exogenous addition of GABA still had a certain improvement on the CAT activity and chlorophyll content of the ORS571-S. rostrata symbiotic system. In conclusion, ORS571 inoculation and GABA application have a positive effect on improving the salt stress tolerance in S. rostrata, which are closely associated with increasing chlorophyll synthesis and antioxidant enzyme activity and changing the amino acid content. Therefore, it can be used as a potential biological measure to improve the saline-alkali land.
Collapse
Affiliation(s)
- Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jiaming Yan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Yongming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
8
|
Role of Signaling Molecules Sodium Nitroprusside and Arginine in Alleviating Salt-Induced Oxidative Stress in Wheat. PLANTS 2022; 11:plants11141786. [PMID: 35890419 PMCID: PMC9319962 DOI: 10.3390/plants11141786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a well-accepted signaling molecule that has regulatory effects on plants under various stresses. Salinity is a major issue that adversely affects plant growth and productivity. The current study was carried out to investigate changes in the growth, biochemical parameters, and yield of wheat plants in response to NO donors, namely sodium nitroprusside (SNP) (2.5 and 5.0 mM) and arginine (10 and 20 mM), under two salinity levels (1.2 mM and 85.5 mM NaCl). Salinity stress significantly decreased the lengths and weights of plant parts (shoot, tiller, and root) and reduced the flag leaf area, photosynthetic pigments, indole acetic acid (IAA), and yield and its components. Moreover, salt stress induced a significant accumulation of some osmoprotectants (total soluble sugars (TSS) and amino acids, especially proline) and triggered the accumulation of hydrogen peroxide (H2O2) and lipid peroxidation in wheat leaves. In contrast, arginine and SNP treatments significantly mitigated the negative impacts of salinity on growth and productivity via enhancing photosynthetic pigments, nitrate reductase, phenolic compounds, IAA, TSS, free amino acids, and proline. In addition, SNP and arginine potentially reduced oxidative damage by decreasing H2O2 and lipid peroxidation through the induction of antioxidant enzymes. The individual amino acid composition of wheat grains under the interactive effect of salinity and NO sources has been scarcely documented until now. In this study, the NO sources restrained the reduction in essential amino acids (isoleucine and lysine) of wheat grains under salinity stress and further stimulated the contents of non-essential and total aromatic amino acids. Interestingly, the applied protectants recovered the decrease in arginine and serine induced by salinity stress. Thus, SNP or arginine at the levels of 5.0 and 20 mM, respectively, had a profound effect on modulating the salt stress of wheat throughout the life cycle.
Collapse
|
9
|
Sabbioni G, Forlani G. The Emerging Role of Proline in the Establishment and Functioning of Legume- Rhizobium Symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:888769. [PMID: 35712558 PMCID: PMC9197100 DOI: 10.3389/fpls.2022.888769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
High levels of some enzymes involved in proline synthesis and utilization were early found in soybean nodules, and rhizobial knockout mutants were shown to be defective in inducing nodulation and/or fixing nitrogen, leading to postulate that this amino acid may represent a main substrate for energy transfer from the plant to the symbiont. However, inconsistent results were reported in other species, and several studies suggested that proline metabolism may play an essential role in the legume-Rhizobium symbiosis only under stress. Different mechanisms have been hypothesized to explain the beneficial effects of proline on nodule formation and bacteroid differentiation, yet none of them has been conclusively proven. Here, we summarize these findings, with special emphasis on the occurrence of a legume-specific isoform of δ1-pyrroline-5-carboxylate synthetase, the enzyme that catalyses the rate-limiting step in proline synthesis. Data are discussed in view of recent results connecting the regulation of both, the onset of nodulation and proline metabolism, to the redox status of the cell. Full comprehension of these aspects could open new perspectives to improve the adaptation of legumes to environmental stress.
Collapse
|
10
|
Soboleva A, Frolova N, Bureiko K, Shumilina J, Balcke GU, Zhukov VA, Tikhonovich IA, Frolov A. Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress. Int J Mol Sci 2022; 23:2726. [PMID: 35269869 PMCID: PMC8910736 DOI: 10.3390/ijms23052726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023] Open
Abstract
Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants' response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Kseniia Bureiko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Julia Shumilina
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Gerd U. Balcke
- Department of Metabolic and Cell Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany;
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 St. Petersburg, Russia; (V.A.Z.); or (I.A.T.)
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 St. Petersburg, Russia; (V.A.Z.); or (I.A.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Saint Petersburg, Russia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany or (K.B.); (J.S.)
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
11
|
Badawy AA, Alotaibi MO, Abdelaziz AM, Osman MS, Khalil AMA, Saleh AM, Mohammed AE, Hashem AH. Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites 2021; 11:metabo11070428. [PMID: 34209783 PMCID: PMC8307109 DOI: 10.3390/metabo11070428] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023] Open
Abstract
Symbiotic plant-fungi interaction is a promising approach to alleviate salt stress in plants. Moreover, endophytic fungi are well known to promote the growth of various crop plants. Herein, seven fungal endophytes were screened for salt tolerance; the results revealed that Aspergillus ochraceus showed a great potentiality in terms of salt tolerance, up to 200 g L−1. The indole acetic acid (IAA) production antioxidant capacity and antifungal activity of A. ochraceus were evaluated, in vitro, under two levels of seawater stress, 15 and 30% (v/v; seawater/distilled water). The results illustrated that A. ochraceus could produce about 146 and 176 µg mL−1 IAA in 15 and 30% seawater, respectively. The yield of IAA by A. ochraceus at 30% seawater was significantly higher at all tryptophan concentrations, as compared with that at 15% seawater. Moreover, the antioxidant activity of ethyl acetate extract of A. ochraceus (1000 µg mL−1) at 15 and 30% seawater was 95.83 ± 1.25 and 98.33 ± 0.57%, respectively. Crude extracts of A. ochraceus obtained at 15 and 30% seawater exhibited significant antifungal activity against F. oxysporum, compared to distilled water. The irrigation of barley plants with seawater (15 and 30%) caused notable declines in most morphological indices, pigments, sugars, proteins, and yield characteristics, while increasing the contents of proline, malondialdehyde, and hydrogen peroxide and the activities of antioxidant enzymes. On the other hand, the application of A. ochraceus mitigated the harmful effects of seawater on the growth and physiology of barley plants. Therefore, this study suggests that the endophytic fungus A. ochraceus MT089958 could be applied as a strategy for mitigating the stress imposed by seawater irrigation in barley plants and, therefore, improving crop growth and productivity.
Collapse
Affiliation(s)
- Ali A. Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
| | - Modhi O. Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
| | - Mahmoud S. Osman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| | - Ahmed M. A. Khalil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Biology Department, College of Science, Taibah University, Yanbu 41911, Saudi Arabia
| | - Ahmed M. Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| |
Collapse
|
12
|
Fedorova EE, Coba de la Peña T, Lara-Dampier V, Trifonova NA, Kulikova O, Pueyo JJ, Lucas MM. Potassium content diminishes in infected cells of Medicago truncatula nodules due to the mislocation of channels MtAKT1 and MtSKOR/GORK. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1336-1348. [PMID: 33130893 PMCID: PMC7904148 DOI: 10.1093/jxb/eraa508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/03/2020] [Indexed: 05/26/2023]
Abstract
Rhizobia establish a symbiotic relationship with legumes that results in the formation of root nodules, where bacteria encapsulated by a membrane of plant origin (symbiosomes), convert atmospheric nitrogen into ammonia. Nodules are more sensitive to ionic stresses than the host plant itself. We hypothesize that such a high vulnerability might be due to defects in ion balance in the infected tissue. Low temperature SEM (LTSEM) and X-ray microanalysis of Medicago truncatula nodules revealed a potassium (K+) decrease in symbiosomes and vacuoles during the life span of infected cells. To clarify K+ homeostasis in the nodule, we performed phylogenetic and gene expression analyses, and confocal and electron microscopy localization of two key plant Shaker K+ channels, AKT1 and SKOR/GORK. Phylogenetic analyses showed that the genome of some legume species, including the Medicago genus, contained one SKOR/GORK and one AKT1 gene copy, while other species contained more than one copy of each gene. Localization studies revealed mistargeting and partial depletion of both channels from the plasma membrane of M. truncatula mature nodule-infected cells that might compromise ion transport. We propose that root nodule-infected cells have defects in K+ balance due to mislocation of some plant ion channels, as compared with non-infected cells. The putative consequences are discussed.
Collapse
Affiliation(s)
- Elena E Fedorova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | | | - Natalia A Trifonova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | | | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
13
|
Xu W, Zhong C, Zou C, Wang B, Zhang N. Analytical methods for amino acid determination in organisms. Amino Acids 2020; 52:1071-1088. [PMID: 32857227 DOI: 10.1007/s00726-020-02884-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Amino acids are important metabolites for tissue metabolism, growth, maintenance, and repair, which are basic life necessities. Therefore, summarizing analytical methods for amino acid determination in organisms is important. In the past decades, analytical methods for amino acids have developed rapidly but have not been fully explored. Thus, this article provides reference to analytical methods for amino acids in organisms for food and human research. Present amino acid analysis methods include thin-layer chromatography, high-performance liquid chromatography, liquid chromatography-mass spectrometer, gas chromatography-mass spectrometry, capillary electrophoresis, nuclear magnetic resonance, and amino acid analyzer analysis.
Collapse
Affiliation(s)
- Weihua Xu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China
- State Key Laboratory of Drug Research and Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, 201203, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui, 230013, China
| | - Congcong Zhong
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China
| | - Chunpu Zou
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing Wang
- State Key Laboratory of Drug Research and Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, 201203, China.
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China.
| |
Collapse
|
14
|
Yang B, Chen M, Wang T, Chen X, Li Y, Wang X, Zhu W, Xia L, Hu X, Tian J. A metabolomic strategy revealed the role of JA and SA balance in Clematis terniflora DC. Response to UVB radiation and dark. PHYSIOLOGIA PLANTARUM 2019; 167:232-249. [PMID: 30467852 DOI: 10.1111/ppl.12883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Clematis terniflora DC. is a valuable resource with potential high pharmaceutical value. Proteomic, transcriptomic and metabolomic analyses of C. terniflora that has been exposed to high levels of UVB irradiation and dark conditions (HUVB + D) have revealed the mechanisms underlying its medicinal potential. However, the signal transduction pathways and the mechanisms of regulation for the accumulation of secondary metabolites remain unclear. In this study, we show that the jasmonic acid (JA) and salicylic acid (SA) signals were activated in C. terniflora in response to HUVB + D. Metabolomic analysis demonstrated that the perturbation in JA and SA balance led to additional reallocation of carbon and nitrogen resources. Evaluating the fold change ratios of differentially changed metabolites proved that JA signal enhanced the transformation of nitrogen to carbon through the 4-aminobutyric acid (GABA) shunt pathway, which increased the carbon reserve to be utilized in the production of secondary metabolites. However, SA signal induced the synthesis of proline, while avoiding the accumulation of secondary metabolites. Over all, the results indicate that the co-increase of JA and SA reconstructed the dynamic stability of transformation from nitrogen to carbon, which effectively enhanced the oxidative defense to HUVB + D in C. terniflora by increasing the secondary metabolites.
Collapse
Affiliation(s)
- Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Meng Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xin Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Li'an Xia
- Benxi Hi-tech Industrial Development Zone, Benxi, China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- Education Ministry Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Li X, Han S, Wang G, Liu X, Amombo E, Xie Y, Fu J. The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Ryegrass. Front Microbiol 2017; 8:1664. [PMID: 28936200 PMCID: PMC5595160 DOI: 10.3389/fmicb.2017.01664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023] Open
Abstract
Perennial ryegrass (Lolium perenne) is an important forage grass with high yield and superior quality in temperate regions which is widely used in parks, sport field, and other places. However, perennial ryegrass is moderately tolerant to salinity stress compared to other commercial cultivars and salt stress reduces their growth and productivity. Aspergillus aculeatus has been documented to participate in alleviating damage induced by salinity. Therefore, the objective of this study was to investigate the mechanisms underlying A. aculeatus-mediated salt tolerance, and forage quality of perennial ryegrass exposed to 0, 200, and 400 mM NaCl concentrations. Physiological markers and forage quality of perennial ryegrass to salt stress were evaluated based on the growth rate, photosynthesis, antioxidant enzymes activity, lipid peroxidation, ionic homeostasis, the nutritional value of forage, and metabolites. Plants inoculated with A. aculeatus exhibited higher relative growth rate (RGR), turf and forage quality under salt stress than un-inoculated plants. Moreover, in inoculated plants, the fungus remarkably improved plant photosynthetic efficiency, reduced the antioxidant enzymes activity (POD and CAT), and attenuated lipid peroxidation (decreased H2O2 and MDA accumulation) induced by salinity, compared to un-inoculated plants. Furthermore, the fungus also acts as an important role in maintaining the lower Na/K ratio and metabolites and lower the amino acids (Alanine, Proline, GABA, and Asparagine), and soluble sugars (Glucose and Fructose) for inoculated plants than un-inoculated ones. Our results suggest that A. aculeatus may be involved in modulating perennial ryegrass tolerance to salinity in various ways.
Collapse
Affiliation(s)
- Xiaoning Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Shijuan Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Xiaoying Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,School of Resources and Environmental Engineering, Ludong UniversityYantai, China
| |
Collapse
|
16
|
Mansour MMF, Ali EF. Evaluation of proline functions in saline conditions. PHYTOCHEMISTRY 2017; 140:52-68. [PMID: 28458142 DOI: 10.1016/j.phytochem.2017.04.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/10/2017] [Accepted: 04/20/2017] [Indexed: 05/20/2023]
Abstract
More than one third of the world's irrigated lands are affected by salinity, which has great impact on plant growth and yield worldwide. Proline accumulation under salt stress has been indicated to correlate with salt tolerance. Exogenous application as well as genetic engineering of metabolic pathways involved in the metabolism of proline has been successful in improving tolerance to salinity. Correlation between proline accumulation as well as its proposed roles and salt adaptation, however, has not been clearly confirmed in several plant species. In addition, the studies relating proline functions and plant salt tolerance are always carried out in growth chambers, and are not successfully verified in field conditions. Further, plant salt tolerance is a complex trait, and studies based solely on proline accumulation do not adequately explain its functions in salinity tolerance, and thus it is difficult to interpret the discrepancies among different data. Moreover, several reports indicate that Pro role in salt tolerance is a matter of debates, as whether Pro accumulation has adaptive significance or is a consequence of alterations in cellular metabolism induced by salinity. As no consensus is obtained on the exact roles of proline production, proline exact roles in the adaptation to saline environments is therefore still lacking and is even a matter of debates. It is obvious that comprehensive future research is needed to establish the proline exact mechanism by which it enhances plant salt tolerance. We propose, however, that proline might be essential for improving salinity tolerance in some species/cultivars, but may not be relevant in others. Evidence supporting both arguments has been presented in order to reassess the feasibility of the proposed roles of Pro in plant salt tolerance mechanism.
Collapse
Affiliation(s)
- Mohamed Magdy F Mansour
- Dept. of Botany, Fac. of Science, Ain Shams Univ., Cairo 11566, Egypt; Dept. of Biology, Fac. of Science, Taif Univ., Taif, Saudi Arabia.
| | - Esmat Farouk Ali
- Dept. of Horticulture (Floriculture), Fac. of Agriculture, Assuit Univ., Assuit, Egypt; Dept. of Biology, Fac. of Science, Taif Univ., Taif, Saudi Arabia
| |
Collapse
|