1
|
Yang C, Du S, Shi Y, Zhang D, Yue J, Li X, Jin H, Fang B, Wei F, Zhang Z, Yan G. Differential Sensitivity of Photosynthetic Electron Transport to Dark-Induced Senescence in Wheat Flag Leaves. BMC PLANT BIOLOGY 2025; 25:650. [PMID: 40380095 DOI: 10.1186/s12870-025-06624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/25/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND In winter wheat (Triticum aestivum), delayed senescence of the flag leaf is linked to the duration of photosynthesis and grain yield. In different wheat cultivars, various components of the photosynthetic apparatus may display differences during senescence. Furthermore, previous studies related to senescence mostly used a limited number of cultivars, making it difficult to investigate the patterns and reasons for different appearance of damage to electron transport among various cultivars.To tackle these challenges, flag leaves of 32 wheat cultivars were subjected to darkness in vitro to simulate the senescence process. The cultivars were divided into three groups by k-means clustering, based on the rate of decline in their leaf chlorophyll content. Subsequently, we simultaneously measured prompt chlorophyll a fluorescence, delayed chlorophyll a fluorescence, and modulated 820-nm light reflection to examine the alterations in photosynthetic electron transport within the three groups of wheat cultivars during dark-induced senescence. RESULTS The results showed that the photosystem II (PSII) donor side, grouping of PSII units, PSII reaction center, PSII acceptor side, and photosystem I (PSI) were all damaged during dark-induced senescence, while the sensitivity of photosynthetic electron transport to senescence gradually increased from the upstream to downstream electron carriers on the PSII acceptor side. The extent of the observed decrease in activity of the different components of the photosynthetic electron transport chain during senescence, was consistent with the chlorophyll degradation rate of the wheat cultivars, while the priority of inhibition for different photosynthetic electron transport processes in each cultivar group was different. The results from the three separate signals align well with each other. CONCLUSIONS The sensitivity of different part of photosynthetic electron transport to senescence were varied depended on their chlorophyll degradation rate. The differences in the response of different processes of photosynthetic electron transport to chlorophyll degradation rates might be an important factor influencing the differences in photoinhibition among wheat cultivars, especially in senescence process.
Collapse
Affiliation(s)
- Cheng Yang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Simeng Du
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Yanhua Shi
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Deqi Zhang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Junqin Yue
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Xiangdong Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China.
| | - Haiyang Jin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Baoting Fang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Fang Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450002, China
| | - Zishan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ge Yan
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Gong X, Wan Z, Jin P, Jin S, Li X. Drought-Driven Divergence in Photosynthetic Performance Between Two Cunninghamia lanceolata Provenances: Insights from Gas Exchange and Chlorophyll Fluorescence Dynamics. PLANTS (BASEL, SWITZERLAND) 2025; 14:1487. [PMID: 40431052 PMCID: PMC12115317 DOI: 10.3390/plants14101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
Cunninghamia lanceolata, contributing 25% to China's commercial timber production, faces severe drought threats. However, provenance-specific photosynthetic adaptations remain poorly understood. Here, we compared gas exchange, prompt/delayed fluorescence (PF/DF), and modulated 820-nm reflection (MR) responses of two provenances (JXJJ and FJSM) under different drought treatment times. JXJJ maintained a higher net photosynthetic rate (Pn) and stomatal conductance (Gs) than FJSM under drought stress. The declining rates of FV/FM, φEO, ΨO, δRO, PIABS, TRO/CSM, and ETO/CSM were much more rapid in the FJSM than in the JXJJ. An MR kinetics analysis revealed significantly greater PSI impairment in FJSM, evidenced by a 60.2% reduction in P700+ re-reduction rate (Vred) compared to only 44.4% in JXJJ (p < 0.05) at 20 d drought treatment. Similarly, DF measurements demonstrated more pronounced PSII energy transfer disruption in FJSM, with the I2/I1 ratio increasing by 51.3% vs. 43.0% in JXJJ at 20 d drought treatment. These results demonstrate JXJJ's superior drought resilience through coordinated stomatal and non-stomatal regulation. Our findings provide actionable criteria for selecting drought-tolerant C. lanceolata provenances, which is essential for sustainable forestry as the climate changes. This study underscores the significance of photosynthetic activity in how C. lanceolata responds to drought and gives insights into boosting drought tolerance in forest species through genetic improvements.
Collapse
Affiliation(s)
- Xiaofei Gong
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (X.G.); (Z.W.); (P.J.); (S.J.)
- Suichang County Ecological Forestry Development Center, Lishui 323300, China
| | - Ziyun Wan
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (X.G.); (Z.W.); (P.J.); (S.J.)
| | - Peng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (X.G.); (Z.W.); (P.J.); (S.J.)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (X.G.); (Z.W.); (P.J.); (S.J.)
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (X.G.); (Z.W.); (P.J.); (S.J.)
| |
Collapse
|
3
|
Zhang J, Xu Y, Lu K, Gong Z, Weng Z, Shu P, Chen Y, Jin S, Li X. Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions. PLoS One 2024; 19:e0305133. [PMID: 38935623 PMCID: PMC11210784 DOI: 10.1371/journal.pone.0305133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.
Collapse
Affiliation(s)
- Jing Zhang
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Yanxia Xu
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Kaixing Lu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Zhengyu Gong
- Ecological Forestry Development Center of Suichang County, Suichang, China
| | - Zhenming Weng
- Ecological Forestry Development Center of Suichang County, Suichang, China
| | - Pengzhou Shu
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Yujia Chen
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji, China
| |
Collapse
|
4
|
Downregulation of PSI regulates photosynthesis in early successional tree species. Evidence from a field survey across European forests. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Mlinarić S, Begović L, Tripić N, Piškor A, Cesar V. Evaluation of Light-Dependent Photosynthetic Reactions in Reynoutria japonica Houtt. Leaves Grown at Different Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:612702. [PMID: 34421934 PMCID: PMC8371261 DOI: 10.3389/fpls.2021.612702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The Japanese knotweed (Reynoutria japonica Houtt.) is considered as one of the most aggressive and highly successful invasive plants with a negative impact on invaded habitats. Its uncontrolled expansion became a significant threat to the native species throughout Europe. Due to its extensive rhizome system, rapid growth, and allelopathic activity, it usually forms monocultures that negatively affect the nearby vegetation. The efficient regulation of partitioning and utilization of energy in photosynthesis enables invasive plants to adapt rapidly a variety of environmental conditions. Therefore, we aimed to determine the influence of light conditions on photosynthetic reactions in the Japanese knotweed. Plants were grown under two different light regimes, namely, constant low light (CLL, 40 μmol/m2/s) and fluctuating light (FL, 0-1,250 μmol/m2/s). To evaluate the photosynthetic performance, the direct and modulated chlorophyll a fluorescence was measured. Plants grown at a CLL served as control. The photosynthetic measurements revealed better photosystem II (PSII) stability and functional oxygen-evolving center of plants grown in FL. They also exhibited more efficient conversion of excitation energy to electron transport and an efficient electron transport beyond the primary electron acceptor QA, all the way to PSI. The enhanced photochemical activity of PSI suggested the formation of a successful adaptive mechanism by regulating the distribution of excitation energy between PSII and PSI to minimize photooxidative damage. A faster oxidation at the PSI side most probably resulted in the generation of the cyclic electron flow around PSI. Besides, the short-term exposure of FL-grown knotweeds to high light intensity increased the yield induced by downregulatory processes, suggesting that the generation of the cyclic electron flow protected PSI from photoinhibition.
Collapse
Affiliation(s)
- Selma Mlinarić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Neven Tripić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Antonija Piškor
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
6
|
|
7
|
Zhang D, Xu J, Bao M, Yan D, Beer S, Beardall J, Gao K. Elevated CO 2 concentration alleviates UVR-induced inhibition of photosynthetic light reactions and growth in an intertidal red macroalga. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112074. [PMID: 33152637 DOI: 10.1016/j.jphotobiol.2020.112074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
The commercially important red macroalga Pyropia (formerly Porphyra) yezoensis is, in its natural intertidal environment, subjected to high levels of both photosynthetically active and ultraviolet radiation (PAR and UVR, respectively). In the present work, we investigated the effects of a plausibly increased global CO2 concentration on quantum yields of photosystems II (PSII) and I (PSI), as well as photosynthetic and growth rates of P. yezoensis grown under natural solar irradiance regimes with or without the presence of UV-A and/or UV-B. Our results showed that the high-CO2 treatment (~1000 μbar, which also caused a drop of 0.3 pH units in the seawater) significantly increased both CO2 assimilation rates (by 35%) and growth (by 18%), as compared with ambient air of ~400 μbar CO2. The inhibition of growth by UV-A (by 26%) was reduced to 15% by high-CO2 concentration, while the inhibition by UV-B remained at ~6% under both CO2 concentrations. Homologous results were also found for the maximal relative photosynthetic electron transport rates (rETRmax), the maximum quantum yield of PSII (Fv/Fm), as well as the midday decrease in effective quantum yield of PSII (YII) and concomitant increased non-photochemical quenching (NPQ). A two-way ANOVA analysis showed an interaction between CO2 concentration and irradiance quality, reflecting that UVR-induced inhibition of both growth and YII were alleviated under the high-CO2 treatment. Contrary to PSII, the effective quantum yield of PSI (YI) showed higher values under high-CO2 condition, and was not significantly affected by the presence of UVR, indicating that it was well protected from this radiation. Both the elevated CO2 concentration and presence of UVR significantly induced UV-absorbing compounds. These results suggest that future increasing CO2 conditions will be beneficial for photosynthesis and growth of P. yezoensis even if UVR should remain at high levels.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361105, China
| | - Juntian Xu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Menglin Bao
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dong Yan
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361105, China
| | - Sven Beer
- Department of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361105, China; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361105, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
8
|
Zhang D, Zhang QS, Yang XQ. Seasonal dynamics of photosynthetic activity in the representive brown macroalgae Sagrassum thunbergii (Sargassaceae Phaeophyta). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:88-94. [PMID: 28992543 DOI: 10.1016/j.plaphy.2017.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The present study evaluates the seasonal photosynthetic performances of Sargassum thunbergii via chlorophyll fluorescence technique. During summer and early winter, no significant change was observed in maximum photochemical efficiency (Fv/Fm), and performance index (PIabs). During late winter and early spring, Fv/Fm, and PIabs decreased significantly, implying that S. thunbergii photosystem II (PSII) suffered apparent photoinhibition. Subsequently, PSII gradually recovered during late spring and summer, as evidenced by an increase of both parameters. Throughout the year, the maximum decrease in the slope of MR/MR0 maintained low values indicated that photosystem I (PSI) was incative, the initial rate of P700+ re-reduction maintained low value indicated that cyclic electron transport (CET) were inactive; nevertheless, a seasonal down-regulation of both PSI and CET during late winter and early spring could be detected. The weak performance of PSI and CET can potentially limit the flexibility in response to winter stress and result in a delayed recovery of PSII. In conclusion, the seasonal variability of S. thunbergii photosynthetic activity was characterized by three periods: active state, down-regulation and restoration. The rapid growth during early spring was accompanied by weak photosynthetic performance, indicating that the carbohydrates consumed during this period were derived from previously stored starch.
Collapse
Affiliation(s)
- Di Zhang
- Ocean School, Yantai University, Yantai 264005, PR China
| | | | - Xiao Qi Yang
- Ocean School, Yantai University, Yantai 264005, PR China
| |
Collapse
|