1
|
Roy J, Sreedasyam A, Osborne C, Lee R, McClean PE. Seed coat transcriptomic profiling of 5-593, a genotype important for genetic studies of seed coat color and patterning in common bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2025; 25:284. [PMID: 40038560 DOI: 10.1186/s12870-025-06282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Common bean (Phaseolus vulgaris L.) market classes have distinct seed coat colors, which are directly related to the diverse flavonoids found in the mature seed coat. To understand and elucidate the molecular mechanisms underlying the regulation of seed coat color, RNA-Seq data was collected from the black bean 5-593 and used for a differential gene expression and enrichment analysis from four different seed coat color development stages. 5-593 carries dominant alleles for 10 of the 11 major genes that control seed coat color and expression and has historically been used to develop introgression lines used for seed coat genetic analysis. Pairwise comparison among the four stages identified 6,294 differentially expressed genes (DEGs) varying from 508 to 5,780 DEGs depending on the compared stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction comprised the principal pathways expressed during bean seed coat pigment development. Transcriptome analysis suggested that most structural genes for flavonoid biosynthesis and some potential regulatory genes were significantly differentially expressed. Further studies detected 29 DEGs as important candidate genes governing the key enzymatic flavonoid biosynthetic pathways for common bean seed coat color development. Additionally, four gene models, Pv5-593.02G016100, 593.02G078700, Pv5-593.02G090900, and Pv5-593.06G121300, encode MYB-like transcription factor family protein were identified as strong candidate regulatory genes in anthocyanin biosynthesis which could regulate the expression levels of some important structural genes in flavonoid biosynthesis pathway. These findings provide a framework to draw new insights into the molecular networks underlying common bean seed coat pigment development.
Collapse
Affiliation(s)
- Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Caroline Osborne
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
2
|
Sultana T, Malik K, Raja NI, Mashwani ZUR, Hameed A, Ullah R, Alqahtani AS, Sohail. Aflatoxins in Peanut ( Arachis hypogaea): Prevalence, Global Health Concern, and Management from an Innovative Nanotechnology Approach: A Mechanistic Repertoire and Future Direction. ACS OMEGA 2024; 9:25555-25574. [PMID: 38911815 PMCID: PMC11190918 DOI: 10.1021/acsomega.4c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".
Collapse
Affiliation(s)
- Tahira Sultana
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Khafsa Malik
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Naveed Iqbal Raja
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Asma Hameed
- Department
of Botany, PMAS, Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Riaz Ullah
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Medicinal
Aromatic and Poisonous Plants Research Center College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia
| | - Sohail
- College
of Bioscience and Biotechnology, Yangzhou
University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
3
|
Liu Z, Fu X, Xu H, Zhang Y, Shi Z, Zhou G, Bao W. Comprehensive Analysis of bHLH Transcription Factors in Ipomoea aquatica and Its Response to Anthocyanin Biosynthesis. Int J Mol Sci 2023; 24:5652. [PMID: 36982726 PMCID: PMC10057536 DOI: 10.3390/ijms24065652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The basic helix-loop-helix (bHLH) proteins compose one of the largest transcription factor (TF) families in plants, which play a vital role in regulating plant biological processes including growth and development, stress response, and secondary metabolite biosynthesis. Ipomoea aquatica is one of the most important nutrient-rich vegetables. Compared to the common green-stemmed I. aquatica, purple-stemmed I. aquatica has extremely high contents of anthocyanins. However, the information on bHLH genes in I. aquatica and their role in regulating anthocyanin accumulation is still unclear. In this study, we confirmed a total of 157 bHLH genes in the I. aquatica genome, which were classified into 23 subgroups according to their phylogenetic relationship with the bHLH of Arabidopsis thaliana (AtbHLH). Of these, 129 IabHLH genes were unevenly distributed across 15 chromosomes, while 28 IabHLH genes were spread on the scaffolds. Subcellular localization prediction revealed that most IabHLH proteins were localized in the nucleus, while some were in the chloroplast, extracellular space, and endomembrane system. Sequence analysis revealed conserved motif distribution and similar patterns of gene structure within IabHLH genes of the same subfamily. Analysis of gene duplication events indicated that DSD and WGD played a vital role in the IabHLH gene family expansion. Transcriptome analysis showed that the expression levels of 13 IabHLH genes were significantly different between the two varieties. Of these, the IabHLH027 had the highest expression fold change, and its expression level was dramatically higher in purple-stemmed I. aquatica than that in green-stemmed I. aquatica. All upregulated DEGs in purple-stemmed I. aquatica exhibited the same expression trends in both qRT-PCR and RNA-seq. Three downregulated genes including IabHLH142, IabHLH057, and IabHLH043 determined by RNA-seq had opposite expression trends of those detected by qRT-PCR. Analysis of the cis-acting elements in the promoter region of 13 differentially expressed genes indicated that light-responsive elements were the most, followed by phytohormone-responsive elements and stress-responsive elements, while plant growth and development-responsive elements were the least. Taken together, this work provides valuable clues for further exploring IabHLH function and facilitating the breeding of anthocyanin-rich functional varieties of I. aquatica.
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Xiaoai Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Hao Xu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Yuxin Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhidi Shi
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Guangzhen Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wenlong Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| |
Collapse
|
4
|
Ahmad N, Zhang K, Ma J, Yuan M, Zhao S, Wang M, Deng L, Ren L, Gangurde SS, Pan J, Ma C, Li C, Guo B, Wang X, Li A, Zhao C. Transcriptional networks orchestrating red and pink testa color in peanut. BMC PLANT BIOLOGY 2023; 23:44. [PMID: 36658483 PMCID: PMC9850581 DOI: 10.1186/s12870-023-04041-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/03/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Testa color is an important trait of peanut (Arachis hypogaea L.) which is closely related with the nutritional and commercial value. Pink and red are main color of peanut testa. However, the genetic mechanism of testa color regulation in peanut is not fully understood. To elucidate a clear picture of peanut testa regulatory model, samples of pink cultivar (Y9102), red cultivar (ZH12), and two RNA pools (bulk red and bulk pink) constructed from F4 lines of Y9102 x ZH12 were compared through a bulk RNA-seq approach. RESULTS A total of 2992 differential expressed genes (DEGs) were identified among which 317 and 1334 were up-regulated and 225 and 1116 were down-regulated in the bulk red-vs-bulk pink RNA pools and Y9102-vs-ZH12, respectively. KEGG analysis indicates that these genes were divided into significantly enriched metabolic pathways including phenylpropanoid, flavonoid/anthocyanin, isoflavonoid and lignin biosynthetic pathways. Notably, the expression of the anthocyanin upstream regulatory genes PAL, CHS, and CHI was upregulated in pink and red testa peanuts, indicating that their regulation may occur before to the advent of testa pigmentation. However, the differential expression of down-stream regulatory genes including F3H, DFR, and ANS revealed that deepening of testa color not only depends on their gene expression bias, but also linked with FLS inhibition. In addition, the down-regulation of HCT, IFS, HID, 7-IOMT, and I2'H genes provided an alternative mechanism for promoting anthocyanin accumulation via perturbation of lignin and isoflavone pathways. Furthermore, the co-expression module of MYB, bHLH, and WRKY transcription factors also suggested a fascinating transcriptional activation complex, where MYB-bHLH could utilize WRKY as a co-option during the testa color regulation by augmenting anthocyanin biosynthesis in peanut. CONCLUSIONS These findings reveal candidate functional genes and potential strategies for the manipulation of anthocyanin biosynthesis to improve peanut varieties with desirable testa color.
Collapse
Affiliation(s)
- Naveed Ahmad
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun Zhang
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
| | - Jing Ma
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Shuzhen Zhao
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Mingqing Wang
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Li Deng
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, 475008, People's Republic of China
| | - Li Ren
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, 475008, People's Republic of China
| | - Sunil S Gangurde
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Jiaowen Pan
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Changsheng Li
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Xingjun Wang
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Aiqin Li
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
5
|
Yao X, Yao Y, An L, Li X, Bai Y, Cui Y, Wu K. Accumulation and regulation of anthocyanins in white and purple Tibetan Hulless Barley (Hordeum vulgare L. var. nudum Hook. f.) revealed by combined de novo transcriptomics and metabolomics. BMC PLANT BIOLOGY 2022; 22:391. [PMID: 35922757 PMCID: PMC9351122 DOI: 10.1186/s12870-022-03699-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Colored barley, which may have associated human health benefits, is more desirable than the standard white variety, but the metabolites and molecular mechanisms underlying seedcoat coloration remain unclear. RESULTS Here, the development of Tibetan hulless barley was monitored, and 18 biological samples at 3 seedcoat color developmental stages were analyzed by transcriptomic and metabolic assays in Nierumuzha (purple) and Kunlun10 (white). A total of 41 anthocyanin compounds and 4186 DEGs were identified. Then we constructed the proanthocyanin-anthocyanin biosynthesis pathway of Tibetan hulless barley, including 19 genes encoding structural enzymes in 12 classes (PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, DFR, ANS, ANR, GT, and ACT). 11 DEGs other than ANR were significantly upregulated in Nierumuzha as compared to Kunlun10, leading to high levels of 15 anthocyanin compounds in this variety (more than 25 times greater than the contents in Kunlun10). ANR was significantly upregulated in Kunlun10 as compared to Nierumuzha, resulting in higher contents of three anthocyanins compounds (more than 5 times greater than the contents in Nierumuzha). In addition, 22 TFs, including MYBs, bHLHs, NACs, bZips, and WD40s, were significantly positively or negatively correlated with the expression patterns of the structural genes. Moreover, comparisons of homologous gene sequences between the two varieties identified 61 putative SNPs in 13 of 19 structural genes. A nonsense mutation was identified in the coding sequence of the ANS gene in Kunlun10. This mutation might encode a nonfunctional protein, further reducing anthocyanin accumulation in Kunlun10. Then we identified 3 modules were highly specific to the Nierumuzha (purple) using WGCNA. Moreover, 12 DEGs appeared both in the putative proanthocyanin-anthocyanin biosynthesis pathway and the protein co-expression network were obtained and verified. CONCLUSION Our study constructed the proanthocyanin-anthocyanin biosynthesis pathway of Tibetan hulless barley. A series of compounds, structural genes and TFs responsible for the differences between purple and white hulless barley were obtained in this pathway. Our study improves the understanding of the molecular mechanisms of anthocyanin accumulation and biosynthesis in barley seeds. It provides new targets for the genetic improvement of anthocyanin content and a framework for improving the nutritional quality of barley.
Collapse
Affiliation(s)
- Xiaohua Yao
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Youhua Yao
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Likun An
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Xin Li
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Yixiong Bai
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Yongmei Cui
- Qinghai University, Xining, 810016, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
| | - Kunlun Wu
- Qinghai University, Xining, 810016, China.
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, 810016, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China.
| |
Collapse
|
6
|
Li J, Ma Y, Hu M, Zhao Y, Liu B, Wang C, Zhang M, Zhang L, Yang X, Mu G. Multi-Omics and miRNA Interaction Joint Analysis Highlight New Insights Into Anthocyanin Biosynthesis in Peanuts ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:818345. [PMID: 35251087 PMCID: PMC8888885 DOI: 10.3389/fpls.2022.818345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 06/01/2023]
Abstract
Peanut (Arachis hypogaea L.) is one of the most important economic and oil crops in the world. At present, peanut varieties with rich anthocyanin in testa are rare in the market, but the selection and breeding of varieties with the related traits has always attracted the attention of breeders. In this study, two peanut varieties with the pink and purple testa, G110 (G) and Z18-40 (Z) were used to conduct interaction joint analysis of multi-omics and miRNA-target gene. The anthocyanin content of Z18-40 was 7.49-8.62-folds higher than G110 on 30 DAF (days after flowering) and 45 DAF via Ultraviolet-visible Spectrophotometer (UV-5800, Shanghai, China). And then, a total of 14 candidate genes related with the anthocyanin biosynthesis were identified for correlation in different comparison groups (R 2 ≥ 0.80), among of a novel gene Ah21440 related with hydroxycinnamoyl transferase (HCT) biosynthesis was identified. In addition, Cyanidin 3-O-glucoside (Kuromanin, pmb0550) was the only common differentially accumulated metabolite (DAM) identified using multi-omics joint analysis in G1_vs_G2, Z1_vs_Z2, G1_vs_Z1, and G2_vs_Z2, respectively. Correlation analysis of miRNA-target genes and DEGs in the transcriptome shows that, AhmiR2950, AhmiR398, AhmiR50, and AhmiR51 regulated to HCT and chalcone biosynthesis related candidate genes (Ah21440, AhCHS, AhCHI). Lastly, all of 14 candidate genes and 4 differentially expressed miRNAs were validated using quantitative real-time PCR (qRT-PCR), which trends were consistent with that of the former transcriptome data. The results provide important reference for in-depth research on the anthocyanin metabolism mechanism in peanut testa.
Collapse
|
7
|
Commey L, Tengey TK, Cobos CJ, Dampanaboina L, Dhillon KK, Pandey MK, Sudini HK, Falalou H, Varshney RK, Burow MD, Mendu V. Peanut Seed Coat Acts as a Physical and Biochemical Barrier against Aspergillus flavus Infection. J Fungi (Basel) 2021; 7:jof7121000. [PMID: 34946983 PMCID: PMC8708384 DOI: 10.3390/jof7121000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 12/29/2022] Open
Abstract
Aflatoxin contamination is a global menace that adversely affects food crops and human health. Peanut seed coat is the outer layer protecting the cotyledon both at pre- and post-harvest stages from biotic and abiotic stresses. The aim of the present study is to investigate the role of seed coat against A. flavus infection. In-vitro seed colonization (IVSC) with and without seed coat showed that the seed coat acts as a physical barrier, and the developmental series of peanut seed coat showed the formation of a robust multilayered protective seed coat. Radial growth bioassay revealed that both insoluble and soluble seed coat extracts from 55-437 line (resistant) showed higher A. flavus inhibition compared to TMV-2 line (susceptible). Further analysis of seed coat biochemicals showed that hydroxycinnamic and hydroxybenzoic acid derivatives are the predominant phenolic compounds, and addition of these compounds to the media inhibited A. flavus growth. Gene expression analysis showed that genes involved in lignin monomer, proanthocyanidin, and flavonoid biosynthesis are highly abundant in 55-437 compared to TMV-2 seed coats. Overall, the present study showed that the seed coat acts as a physical and biochemical barrier against A. flavus infection and its potential use in mitigating the aflatoxin contamination.
Collapse
Affiliation(s)
- Leslie Commey
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Theophilus K. Tengey
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
- CSIR-Savanna Agricultural Research Institute (SARI), Nyankpala P.O. Box 52, Ghana
| | - Christopher J. Cobos
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Lavanya Dampanaboina
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (L.D.); (M.D.B.)
| | - Kamalpreet K. Dhillon
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics, Niamey B.P. 873, Niger;
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark D. Burow
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (L.D.); (M.D.B.)
- Texas A&M AgriLife, Lubbock, TX 79401, USA
| | - Venugopal Mendu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: or ; Tel.: +1-806-834-6327 or +1-406-994-9708
| |
Collapse
|
8
|
Transcriptome and Metabolome Analysis Unveil Anthocyanin Metabolism in Pink and Red Testa of Peanut ( Arachis hypogaea L.). Int J Genomics 2021; 2021:5883901. [PMID: 34395608 PMCID: PMC8363441 DOI: 10.1155/2021/5883901] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2021] [Indexed: 01/25/2023] Open
Abstract
Peanut (Arachis hypogaea L.) is an important source of oil and food around the world, and the testa color affects its appearance and commercial value. However, few studies focused on the mechanism of pigment formation in peanut testa. In this study, cultivars Shanhua 15 with pink testa and Zhonghua 12 with red testa were used as materials to perform the combined analysis of transcriptome and metabolome. A total of 198 flavonoid metabolites were detected, among which petunidin 3-O-glucoside and cyanidin O-acetylhexoside in Zhonghua12 were 15.23 and 14.72 times higher than those of Shanhua 15 at the R7 stage, revealing the anthocyanins underlying the red testa. Transcriptome analysis showed that there were 6059 and 3153 differentially expressed genes between Shanhua 15 and Zhonghua 12 in different growth periods, respectively. These differentially expressed genes were significantly enriched in the flavonoid biosynthesis, biosynthesis of secondary metabolites, and metabolic pathways. Integrated analysis of transcriptome and metabolome indicated CHS gene (arahy.CM90T6), F3'H genes (arahy. 8F7PE4 and arahy. K8H9R8), and DFR genes (arahy. LDV9QN and arahy. X8EVF3) may be the key functional genes controlling the formation of pink and red testa in peanut. Transcription factors MYB (arahy.A2IWKV, arahy.US2SKM, arahy.SJGE27, arahy.H8DJRL, and arahy.PR7AYB), bHLH (arahy.26781N, arahy.HM1IVV, and arahy.MP3D3D), and WD40 (arahy.L6JJW9) in the biosynthetic pathway of anthocyanin were significantly upregulated in Zhonghua 12 which may be the key regulatory genes in testa pigment formation. This is a comprehensive analysis on flavonoid metabolites and related genes expression in peanut testa, providing reference for revealing the regulatory mechanism of pigment accumulation in peanut testa.
Collapse
|
9
|
Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Sci Rep 2021; 11:10721. [PMID: 34021210 PMCID: PMC8140124 DOI: 10.1038/s41598-021-90141-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Peanut is one of the important oil and economic crops, among which the variegated testa peanut is a unique member. The molecular mechanisms underlying the pigment synthesis in variegated testa are still unclear. Differentially expressed genes (DEGs) in the flavonoid metabolism pathway in pigmented areas indicated that there were 27 DEGs highly related to the synthesis of variegated testa color among 1,050 DEGs. Of these 27, 13 were up-regulated and 14 were down-regulated, including 3 PALs, 1 C4H, 2 CHSs, 1 F3H, 1 F3'H, 2 DFRs, 2 LARs, 2 IAAs, 4 bHLHs, and 9 MYBs. GO (Gene Ontology) analysis indicated that DEGs were similarly enriched in three branches. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis suggested flavonoid biosynthesis is the most direct metabolic pathway for the synthesis of testa variegation. The liquid chromatography–tandem mass spectrometry (LC–MS/MS) results showed that cyanidin and delphinidin were the primary metabolites that caused the color differences between the pigmented and the non-pigmented areas. Through the verification of 20 DEGs via qPCR, the results were consistent with transcriptome sequencing in four comparison groups. The results in this study lay the foundation for revealing the molecular regulation mechanisms of flavonoid synthesis in variegated testa peanut.
Collapse
|
10
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
11
|
Comparative RNA-Seq profiling of a resistant and susceptible peanut ( Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis. 3 Biotech 2020; 10:284. [PMID: 32550103 DOI: 10.1007/s13205-020-02270-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022] Open
Abstract
The goal of this study was to identify differentially expressed genes (DEGs) responsible for peanut plant (Arachis hypogaea) defence against Puccinia arachidis (causative agent of rust disease). Genes were identified using a high-throughput RNA-sequencing strategy. In total, 86,380,930 reads were generated from RNA-Seq data of two peanut genotypes, JL-24 (susceptible), and GPBD-4 (resistant). Gene Ontology (GO) and KEGG analysis of DEGs revealed essential genes and their pathways responsible for defence response to P. arachidis. DEGs uniquely upregulated in resistant genotype included pathogenesis-related (PR) proteins, MLO such as protein, ethylene-responsive factor, thaumatin, and F-box, whereas, other genes down-regulated in susceptible genotype were Caffeate O-methyltransferase, beta-glucosidase, and transcription factors (WRKY, bZIP, MYB). Moreover, various genes, such as Chitinase, Cytochrome P450, Glutathione S-transferase, and R genes such as NBS-LRR were highly up-regulated in the resistant genotype, indicating their involvement in the plant defence mechanism. RNA-Seq analysis data were validated by RT-qPCR using 15 primer sets derived from DEGs producing high correlation value (R 2 = 0.82). A total of 4511 EST-SSRs were identified from the unigenes, which can be useful in evaluating genetic diversity among genotypes, QTL mapping, and plant variety improvement through marker-assisted breeding. These findings will help to understand the molecular defence mechanisms of the peanut plant in response to P. arachidis infection.
Collapse
|
12
|
Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut ( Arachis hypogaea L.). 3 Biotech 2020; 10:130. [PMID: 32154043 DOI: 10.1007/s13205-020-2123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
In this study, we reported the genome-wide analysis of the whole sugar transporter gene family of a legume species, peanut (Arachis hypogaea L.), including the chromosome locations, gene structures, phylogeny, expression patterns, as well as comparative genomic analysis with Arabidopsis, rice, grape, and soybean. A total of 76 AhMST genes (AhMST1-76) were identified from the peanut genome and located unevenly in 20 chromosomes. Phylogeny analysis indicated that the AhMSTs can be divided into eight groups including two undefined peanut-specific groups. Transcriptional profiles revealed that many AhMST genes showed tissue-specific expression, the majority of the AhMST genes mainly expressed in sink organs and floral organ of peanut. Chromosome distribution pattern and synteny analysis strongly indicated that genome-wide segmental and tandem duplication contributed to the expansion of peanut MST genes. Four common orthologs (AhMST9, AhMST13, AhMST40, and AhMST43) between peanut and the other four species were identified by comparative genomic analysis, which might play important roles in maintaining the growth and development of plant. Furthermore, four polymorphic sites in AhMST11, AhMST13, and AhMST60 were significantly correlated with hundred pod weight (HPW) and hundred seed weight (HSW) by association analysis. In a word, these results will provide new insights for understanding the functions of AhMST family members to sugar transporting and the potential for yield improvement in peanut.
Collapse
|
13
|
Identification of Two Novel Peanut Genotypes Resistant to Aflatoxin Production and Their SNP Markers Associated with Resistance. Toxins (Basel) 2020; 12:toxins12030156. [PMID: 32121605 PMCID: PMC7150746 DOI: 10.3390/toxins12030156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/25/2022] Open
Abstract
Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) are the most common aflatoxins produced by Aspergillus flavus in peanuts, with high carcinogenicity and teratogenicity. Identification of DNA markers associated with resistance to aflatoxin production is likely to offer breeders efficient tools to develop resistant cultivars through molecular breeding. In this study, seeds of 99 accessions of a Chinese peanut mini-mini core collection were investigated for their reaction to aflatoxin production by a laboratory kernel inoculation assay. Two resistant accessions (Zh.h0551 and Zh.h2150) were identified, with their aflatoxin content being 8.11%-18.90% of the susceptible control. The 99 peanut accessions were also genotyped by restriction site-associated DNA sequencing (RAD-Seq) for a genome-wide association study (GWAS). A total of 60 SNP (single nucleotide polymorphism) markers associated with aflatoxin production were detected, and they explained 16.87%-31.70% of phenotypic variation (PVE), with SNP02686 and SNP19994 possessing 31.70% and 28.91% PVE, respectively. Aflatoxin contents of accessions with "AG" (existed in Zh.h0551 and Zh.h2150) and "GG" genotypes of either SNP19994 or SNP02686 were significantly lower than that of "AA" genotypes in the mean value of a three-year assay. The resistant accessions and molecular markers identified in this study are likely to be helpful for deployment in aflatoxin resistance breeding in peanuts.
Collapse
|
14
|
Su R, Zhou R, Mmadi MA, Li D, Qin L, Liu A, Wang J, Gao Y, Wei M, Shi L, Wu Z, You J, Zhang X, Dossa K. Root diversity in sesame (Sesamum indicum L.): insights into the morphological, anatomical and gene expression profiles. PLANTA 2019; 250:1461-1474. [PMID: 31321496 DOI: 10.1007/s00425-019-03242-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
Sesame harbors a large diversity in root morphological and anatomical traits and a high root biomass improves the plant aboveground biomass as well as the seed yield. Sesame provides one of the most nutritious and healthy vegetable oils, sparking an increasing demand of its seeds. However, with the low yield and productivity of sesame, there is still a huge gap between the seed demand and supply. Improving the root system has a high potential to increase crop productivity, but information on the diversity of the sesame root systems is still lacking. In this study, 40 diverse sesame varieties were grown in soil and hydroponics systems and the diversity of the root system was investigated. The results showed that sesame holds a large root morphological and anatomical diversity, which can be harnessed in breeding programmes. Based on the clustering of the genotypes in hydroponics and soil culture systems, we found that similar genotypes were commonly clustered either in the small-root or in the big-root group, indicating that the hydroponics system can be employed for a large-scale root phenotyping. Our results further revealed that the root biomass positively contributes to increased seed yield in sesame, based on multi-environmental trials. By comparing the root transcriptome of two contrasting genotypes, 2897 differentially expressed genes were detected and they were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, flavonoid biosynthesis, suggesting that these pathways are crucial for sesame root growth and development. Overall, this study sheds light on the diversity of sesame root system and offers the basis for improving root traits and increasing sesame seed yield.
Collapse
Affiliation(s)
- Ruqi Su
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Marie Ali Mmadi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Lu Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Jianqiang Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Mengyuan Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Lisong Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China.
| | - Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan, 430062, China.
| |
Collapse
|
15
|
Pandey MK, Kumar R, Pandey AK, Soni P, Gangurde SS, Sudini HK, Fountain JC, Liao B, Desmae H, Okori P, Chen X, Jiang H, Mendu V, Falalou H, Njoroge S, Mwololo J, Guo B, Zhuang W, Wang X, Liang X, Varshney RK. Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices. Toxins (Basel) 2019; 11:E315. [PMID: 31163657 PMCID: PMC6628460 DOI: 10.3390/toxins11060315] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/12/2023] Open
Abstract
Aflatoxin is considered a "hidden poison" due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer's fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern "omics" approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.
Collapse
Affiliation(s)
- Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Arun K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Jake C Fountain
- Crop Protection and Management Research Unit, United State Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA 31793, USA.
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Boshou Liao
- Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Haile Desmae
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako BP 320, Mali.
| | - Patrick Okori
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - Xiaoping Chen
- Crops Research Institute (CRI) of Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | - Huifang Jiang
- Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Venugopal Mendu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey BP 12404, Niger.
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - James Mwololo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United State Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA 31793, USA.
| | - Weijian Zhuang
- Institute of Oil Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xingjun Wang
- Shandong Academy of Agricultural Sciences, Jinan 250108, China.
| | - Xuanqiang Liang
- Crops Research Institute (CRI) of Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| |
Collapse
|