1
|
Zhao Y, You J, Wang Q, Huang L, Yang M, Liu J, Yu X, Yu L. Elucidating the pivotal functions of fulvic acid in enhancing Monoraphidium sp. QLZ-3 for cadmium remediation and bioresource recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125521. [PMID: 40279750 DOI: 10.1016/j.jenvman.2025.125521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Heavy metal pollution poses substantial challenges to human health and aquatic ecosystems. This study investigates a coupled technology for lipid production and cadmium adsorption utilizing microalgae regulated by fulvic acid (FA). Under the combination of 40 mg L-1 FA and cadmium (Cd) treatment, Monoraphidium sp. QLZ-3 exhibited the highest biomass (3.27 g L-1), lipid content (52.73 %), and lipid productivity (193.26 mg L-1 d-1), which were enhanced by 20.10 %, 15.81 % and 40.27 % respectively compared with the control. Notably, FA application significantly increased cadmium removal efficiency to 100 %. Moreover, the synergistic effect of FA and Cd enhanced the biomass, lipid production, and energy yield (92.38 kJ L-1) by accelerating nitrogen consumption, inhibiting carbohydrate synthesis, and elevating levels of reactive oxygen species and mitogen-activated protein kinase. FA had a minimal impact on fatty acid composition and biodiesel properties. The majority of the biodiesel quality parameters met the specifications for commercial biodiesel. Proteomic analysis revealed that exogenous FA promoted cell growth and lipid accumulation by upregulating the tricarboxylic acid cycle, the nitrogen assimilation pathway, and activating Ca2+ signaling in QLZ-3 under cadmium treatment. Additionally, calcium ion (Ca2+) and reactive oxidative species (ROS) were identified as key factors in promoting cell growth and lipid synthesis under the influence of Cd and FA. These findings collectively indicate that FA can boost both biomass and lipid production, as well as the efficient removal of Cd2+, providing a theoretical foundation for the optimization of microalgal biomass and lipid production and the bioremediation of heavy metal contamination in aquatic environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, Yunnan Key Laboratory of Konjac Biology, College of Agronomy and Life Science, Kunming University, Kunming, 650214, China
| | - Jinkun You
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming, 650032, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, Yunnan Key Laboratory of Konjac Biology, College of Agronomy and Life Science, Kunming University, Kunming, 650214, China
| | - Li Huang
- Faculty of Environmental and Chemical Engineering, Kunming Metallurgy College, Kunming, 650000, China
| | - Min Yang
- Yunnan Urban Agricultural Engineering & Technological Research Center, Yunnan Key Laboratory of Konjac Biology, College of Agronomy and Life Science, Kunming University, Kunming, 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, Yunnan Key Laboratory of Konjac Biology, College of Agronomy and Life Science, Kunming University, Kunming, 650214, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, Yunnan Key Laboratory of Konjac Biology, College of Agronomy and Life Science, Kunming University, Kunming, 650214, China.
| |
Collapse
|
2
|
García-Seoane R, Richards CL, Aboal JR, Fernández JÁ, Schmid MW, Boquete MT. A field study of the molecular response of brown macroalgae to heavy metal exposure: An (epi)genetic approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136304. [PMID: 39486334 DOI: 10.1016/j.jhazmat.2024.136304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Our understanding of the relative contribution of genetic and epigenetic mechanisms to organismal response to stress is largely biased towards specific taxonomic groups (e.g. seed plants) and environmental stresses (e.g. drought and salinity). In previous work, we found intraspecific differences in heavy metal (HM) uptake capacity in the brown macroalgae Fucus vesiculosus. The molecular mechanisms underlying these differences, however, remained unknown. Here, we evaluated the concentrations of HMs, and characterized the genetic (single nucleotide polymorphisms) and epigenetic (cytosine DNA methylation) variability in reciprocal transplants of F. vesiculosus between two polluted and two unpolluted sites on the NW Spanish coast after 90 days. Genetic and epigenetic differentiation did not explain the phenotypic differentiation observed, possibly due to the combined effect of multiple environmental factors acting on the algae in their natural habitats. Nonetheless, we provide further evidence of intraspecific genetic differentiation in F. vesiculosus at short spatial scales, as well as first evidence of population-specific epigenetic changes in brown macroalgae in response to changes in environmental conditions (i.e. transplantation ex situ). We propose that both genetic and, to some extent, epigenetic mechanisms might impinge upon the adaptive potential of this species to environmental change, but this needs to be further addressed.
Collapse
Affiliation(s)
- Rita García-Seoane
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, A Coruña, Spain; CRETUS, Ecology Unit, Universidade de Santiago de Compostela, Spain.
| | | | - Jesús R Aboal
- CRETUS, Ecology Unit, Universidade de Santiago de Compostela, Spain
| | | | | | - M Teresa Boquete
- CRETUS, Ecology Unit, Universidade de Santiago de Compostela, Spain; Department of Integrative Biology, University of South Florida, Tampa, USA; Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain.
| |
Collapse
|
3
|
Ren R, Li Y. STIM1 in tumor cell death: angel or devil? Cell Death Discov 2023; 9:408. [PMID: 37932320 PMCID: PMC10628139 DOI: 10.1038/s41420-023-01703-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) is involved in mediating the store-operated Ca2+ entry (SOCE), driving the influx of the intracellular second messenger calcium ion (Ca2+), which is closely associated with tumor cell proliferation, metastasis, apoptosis, autophagy, metabolism and immune processes. STIM1 is not only regulated at the transcriptional level by NF-κB and HIF-1, but also post-transcriptionally modified by miRNAs and degraded by ubiquitination. Recent studies have shown that STIM1 or Ca2+ signaling can regulate apoptosis, autophagy, pyroptosis, and ferroptosis in tumor cells and act discrepantly in different cancers. Furthermore, STIM1 contributes to resistance against antitumor therapy by influencing tumor cell death. Further investigation into the mechanisms through which STIM1 controls other forms of tumor cell death could aid in the discovery of novel therapeutic targets. Moreover, STIM1 has the ability to regulate immune cells within the tumor microenvironment. Here, we review the basic structure, function and regulation of STIM1, summarize the signaling pathways through which STIM1 regulates tumor cell death, and propose the prospects of antitumor therapy by targeting STIM1.
Collapse
Affiliation(s)
- Ran Ren
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, 400044, Chongqing, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, 400044, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| |
Collapse
|
4
|
TRPV3 promotes the angiogenesis through HIF-1α-VEGF signaling pathway in A549 cells. Acta Histochem 2022; 124:151955. [DOI: 10.1016/j.acthis.2022.151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
|
5
|
Guo H, Li T, Zhao Y, Yu X. Role of copper in the enhancement of astaxanthin and lipid coaccumulation in Haematococcus pluvialis exposed to abiotic stress conditions. BIORESOURCE TECHNOLOGY 2021; 335:125265. [PMID: 34004560 DOI: 10.1016/j.biortech.2021.125265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the effects of copper (Cu) on astaxanthin and lipid biological synthesis in unicellular alga Haematococcus pluvialis under high-light (HL) and nitrogen-deficiency (ND) conditions. During a 15-day cultivation period, the astaxanthin and lipid contents reached the peak values (3.32% and 47.72%) under 6 μM Cu treatment, which were increased by 66.87% and 34.99% compared to nontreated group, respectively. The application of Cu also increased the transcriptional expression of biosynthesis genes and antioxidant enzyme-related genes, as well as increased the intracellular calcium (Ca2+) level but led to a decrease in reactive oxygen species (ROS) levels. Additionally, Cu treatment induced the activation of calcium-dependent protein kinases (CDPKs) and mitogen-activated protein kinases (MAPKs). This approach simultaneously facilitated astaxanthin and lipid production, and the role of Cu were elucidated on the regulation of signal transduction (e.g., Ca2+, CDPK, MAPK and ROS) in the carotenogenesis and lipogenesis in H. pluvialis.
Collapse
Affiliation(s)
- Hang Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
6
|
Bian X, Gao Y. DNA methylation and gene expression alterations in zebrafish embryos exposed to cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30101-30110. [PMID: 33586102 DOI: 10.1007/s11356-021-12691-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
An unexplored attributing molecular mechanism of Cd toxicity is interference with the epigenetic machinery, such as DNA methylation, processes that are crucial for early fetal development. In order to investigate the effects of Cd on the expression of metallothionein (MT) and Dnmts transcripts, markers of DNA methylation, and signaling pathway gene expression, zebrafish embryos were exposed during 24 hours post-fertilization (starting at maximum 8-cell stage) to 0.0089, 0.089, and 0.89 μM Cd. The results showed that the Cd accumulation in zebrafish embryo reached a stable level after 12 hpf, and the Cd accumulation at individual time points was significantly different among different concentration groups. MT mRNA fold was significantly positive with the Cd content in embryos. We observed that the expression level of DNA methyltransferase (Dnmts) in the 0.089 μM Cd exposure group was significantly up-regulated. Dnmt1 expression was significantly up-regulated in the 0.89 μM Cd exposure group, and Dnmt3s expression and global methylation levels were significantly down-regulated. Cd up-regulated ErbB-3 gene expression, down-regulated ErbB-4 gene expression, and neutralized ErbB-1 gene expression. Cd activated Ca2+, MAPK-JUK, p38 MAP kinase, PI3K-AKT, and VEGF signaling pathway genes, indicating these pathway genes related to Cd exposure level. The results are helpful to clarify the molecular mechanism of DNA methylation in zebrafish embryo under metal pressure and further interference with the epigenetic machinery.
Collapse
Affiliation(s)
- Xiaoxue Bian
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. CAX3 (cation/proton exchanger) mediates a Cd tolerance by decreasing ROS through Ca elevation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 105:115-132. [PMID: 32926249 DOI: 10.1007/s11103-020-01072-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Over-expression of CAX3 encoding a cation/proton exchanger enhances Cd tolerance by decreasing ROS (Reactive Oxygen Species) through activating anti-oxidative enzymes via elevation of Ca level in Arabidopsis CAXs (cation/proton exchangers) are involved in the sequestration of cations such as Mn, Li, and Cd, as well as Ca, from cytosol into the vacuole using proton gradients. In addition, it has been reported that CAX1, 2 and 4 are involved in Cd tolerance. Interestingly, it has been reported that CAX3 expressions were enhanced by Cd in Cd-tolerant transgenic plants expressing Hb1 (hemoglobin 1) or UBC1 (Ub-conjugating enzyme 1). Therefore, to investigate whether CAX3 plays a role in increasing Cd tolerance, CAX3 of Arabidopsis and tobacco were over-expressed in Arabidopsis thaliana. Compared to control plants, both transgenic plants displayed an increase in Cd tolerance, no change in Cd accumulation, and enhanced Ca levels. In support of these, AtCAX3-Arabidopsis showed no change in expressions of Cd transporters, but reduced expressions of Ca exporters and lower rate of Ca efflux. By contrast, atcax3 knockout Arabidopsis exhibited a reduced Cd tolerance, while the Cd level was not altered. The expression of Δ90-AtCAX3 (deletion of autoinhibitory domain) increased Cd and Ca tolerance in yeast, while AtCAX3 expression did not. Interestingly, less accumulation of ROS (H2O2 and O2-) was observed in CAX3-expressing transgenic plants and was accompanied with higher antioxidant enzyme activities (SOD, CAT, GR). Taken together, CAX3 over-expression may enhance Cd tolerance by decreasing Cd-induced ROS production by activating antioxidant enzymes and by intervening the positive feedback circuit between ROS generation and Cd-induced spikes of cytoplasmic Ca.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea.
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
8
|
Zhou P, Li Y, Yong Z, Chen M, Zhang Y, Su R, Gong Z. Thienorphine induces antinociception without dependence through activation of κ- and δ-, and partial activation of μ- opioid receptor. Brain Res 2020; 1748:147083. [DOI: 10.1016/j.brainres.2020.147083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
|
9
|
Evolutionary Aspects of TRPMLs and TPCs. Int J Mol Sci 2020; 21:ijms21114181. [PMID: 32545371 PMCID: PMC7312350 DOI: 10.3390/ijms21114181] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
Transient receptor potential (TRP) or transient receptor potential channels are a highly diverse family of mostly non-selective cation channels. In the mammalian genome, 28 members can be identified, most of them being expressed predominantly in the plasma membrane with the exception of the mucolipins or TRPMLs which are expressed in the endo-lysosomal system. In mammalian organisms, TRPMLs have been associated with a number of critical endo-lysosomal functions such as autophagy, endo-lysosomal fusion/fission and trafficking, lysosomal exocytosis, pH regulation, or lysosomal motility and positioning. The related non-selective two-pore cation channels (TPCs), likewise expressed in endosomes and lysosomes, have also been found to be associated with endo-lysosomal trafficking, autophagy, pH regulation, or lysosomal exocytosis, raising the question why these two channel families have evolved independently. We followed TRP/TRPML channels and TPCs through evolution and describe here in which species TRP/TRPMLs and/or TPCs are found, which functions they have in different species, and how this compares to the functions of mammalian orthologs.
Collapse
|
10
|
Zhao P, Wang Y, Huang W, He L, Lin Z, Zhou J, He Q. Toxic effects of terpinolene on Microcystis aeruginosa: Physiological, metabolism, gene transcription, and growth effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137376. [PMID: 32135322 DOI: 10.1016/j.scitotenv.2020.137376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Bioherbicide terpinolene is widely employed in the agricultural field because of its unique phytotoxic properties. However, little is known about the toxicity of bioherbicide on harmful algal blooms (HABs) and its mechanisms. Therefore, in this study, the inhibiting effect of bioherbicide terpinolene on the growth and physiological change of Microcystis aeruginosa was determined. Results showed that the cell density and photosynthetic activity of microalgae were significantly inhibited by terpinolene. Activities of nitrate reductase (NR) and glutamine synthetase (GS) were decreased separately by 25.38% and 42.75% after 4 d of exposure to 1.47 mM terpinolene, suggesting the inhibiting effect of terpinolene on algal nitrogen metabolism. However, the transcript abundance of genes related to membrane protein cytochrome c oxidase subunit II (COX II) and ATP-binding cassette transporters (ABC transporter) were enhanced separately by 3.15 and 1.69-fold compared with control, suggesting the resistance response of cells to terpinolene stress. Additionally, terpinolene not only increased the content of endogenous phytohormones including indole-3-acetic acid (IAA), zeatin, and brassinolide, but also inhibited the expression of genes related to calcium-binding protein (CaBPs), one kind of calcium (Ca2+) sensors, suggesting its regulation on algal signal molecules. These findings helped to understand the ecotoxicity of terpinolene and guide the rational use of bioherbicide in agriculture.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
11
|
Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nat Commun 2019; 10:4180. [PMID: 31519888 PMCID: PMC6744473 DOI: 10.1038/s41467-019-12121-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023] Open
Abstract
Algae produce the largest amount of oxygen on earth and are invaluable for human nutrition and biomedicine, as well as for the chemical industry, energy production and agriculture. The mechanisms by which algae can detect and respond to changes in their environments can rely on membrane receptors, including TRP ion channels. Here we present a 3.5-Å resolution cryo-EM structure of the transient receptor potential (TRP) channel crTRP1 from the alga Chlamydomonas reinhardtii that opens in response to increased temperature and is positively regulated by the membrane lipid PIP2. The structure of crTRP1 significantly deviates from the structures of other TRP channels and has a unique 2-fold symmetrical rose-shape architecture with elbow domains and ankyrin repeat domains submerged and dipping into the membrane, respectively. Our study provides a structure of a TRP channel from a micro-organism and a structural framework for better understanding algae biology and TRP channel evolution.
Collapse
|
12
|
González A, Sáez CA, Moenne A. Copper-induced activation of TRPs and VDCCs triggers a calcium signature response regulating gene expression in Ectocarpus siliculosus. PeerJ 2018; 6:e4556. [PMID: 29682409 PMCID: PMC5907779 DOI: 10.7717/peerj.4556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
In certain multicellular photoautotrophs, such as plants and green macroalgae, it has been demonstrated that calcium signaling importantly mediates tolerance to copper excess. However, there is no information in brown macroalgae, which are phylogenetically distant from green algae and plants. We have previously shown that chronic copper levels (2.5 μM) activate transient receptor potential (TRP) channels in the model brown macroalga Ectocarpus siliculosus, allowing extracellular calcium entry at 13, 29, 39 and 51 min. Here, we showed that intracellular calcium increases also occurred at 3 and 5 h of exposure; these increases were inhibited by antagonists of voltage-dependent calcium channels (VDCCs); a chelating agent of extracellular calcium; an antagonist of endoplasmic reticulum (ER) ATPase; and antagonists of cADPR-, NAADP- and IP3-dependent calcium channels. Thus, copper activates VDCCs allowing extracellular calcium entry and intracellular calcium release from the ER via cADPR-, IP3- and NAADP-dependent channels. Furthermore, the level of transcripts encoding a phytochelatin synthase (PS) and a metallothionein (MT) were analyzed in the alga exposed to 2.5 μM copper from 3 to 24 h. The level of ps and mt transcripts increased until 24 h and these increases were inhibited by antagonists of calmodulins (CaMs), calcineurin B-like proteins (CBLs) and calcium-dependent protein kinases (CDPKs). Finally, activation of VDCC was inhibited by a mixture of TRP antagonists and by inhibitors of protein kinases. Thus, copper-mediated activation of TRPs triggers VDCCs via protein kinases, allowing extracellular calcium entry and intracellular calcium release from ER that, in turn, activate CaMs, CBLs and CDPKs increasing expression of PS and MT encoding genes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| | - Claudio A Sáez
- Laboratory of Costal Environmental Research, Center of Advanced Studies, Universidad de Playa Ancha, Viña del Mar, Valparaíso, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| |
Collapse
|