1
|
Sun T, Ruan J, Cao T, Yao L, Zhao Z, Zhang J, Li J, Deng A, Chen H, Gao X, Song Z. Effects of low-temperature stress during rice heading stage on carbon and nitrogen allocation in paddy eco-system of northeastern China. FRONTIERS IN PLANT SCIENCE 2025; 16:1484734. [PMID: 40190652 PMCID: PMC11968695 DOI: 10.3389/fpls.2025.1484734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
Introduction In high-latitude area, climate change has brought about recurrent chilling stress that adversely impacts the sustainable production of rice and alters the distribution of carbon (C) and nitrogen (N) in paddy ecosystems. A comprehensive understanding of how the paddy ecosystem's C and N allocation responds to low-temperature stress during critical growth stages remains elusive. Methods A rice pot experiment of two varieties combined with 13C and 15N isotope labelling method was conducted to evaluate how low temperature stress at heading stage affects rice yield, and above- and belowground C and N partitioning. Results and Discussion Low-temperature stress significantly reduced rice grain yield of JN809 (sensitive to low-temperature stress) and J88 (tolerant to low-temperature stress) varieties by 27.6% and 21.4%, respectively, This stress tendency increased C and N accumulation in rice stems and leaves, while concurrently decreasing C and N accumulation in panicles. Specifically, under low-temperature stress, the 13C isotope content in stems and leaves was found to be 14.0% and 19.0% higher than in the control treatment, while the 13C and 15N isotope contents in their panicles were 29.3% and 22.5% lower, respectively. The low-temperature tolerant variety (J88) demonstrated a reduced effect of low-temperature stress on rice yield and C, N allocation due to efficient resource reallocation and stress tolerance mechanisms. The findings of this study provide a foundation for developing rice breeding and cultivation techniques that can enhance rice resilience and adaptability to climate change. Additionally, it informs strategies to optimize C and N sequestration practices in rice fields, ensuring high yields and efficient resource utilization.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Nutrient Use and Management/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Ruan
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Grain and Oil, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, China
| | - Tiehua Cao
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Li Yao
- State Key Laboratory of Nutrient Use and Management/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zichao Zhao
- State Key Laboratory of Nutrient Use and Management/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jun Zhang
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiarui Li
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aixing Deng
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haotian Chen
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhao Gao
- State Key Laboratory of Nutrient Use and Management/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhenwei Song
- Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang P, Wu X, Chen Y, Ji G, Ma X, Zhang Y, Xiang J, Wang Y, Wang Z, Li L, Chen H, Zhang Y. Comparative Transcriptome Combined with Morphophysiological Analyses Revealed Carotenoid Biosynthesis for Differential Chilling Tolerance in Two Contrasting Rice (Oryza sativa L.) Genotypes. RICE (NEW YORK, N.Y.) 2023; 16:52. [PMID: 38006430 PMCID: PMC10676345 DOI: 10.1186/s12284-023-00669-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Early spring cold spells can lead to leaf chlorosis during the rice seedling greening process. However, the physiological and molecular mechanisms underlying the rice greening process under low-temperature conditions remain unknown. In this study, comparative transcriptome and morphophysiological analyses were performed to investigate the mechanisms mediating the responses of the Koshihikari (Kos) and Kasalath (Kas) rice cultivars to chilling stress. According to their growth-related traits, electrolyte leakage, and chlorophyll fluorescence parameters, Kos was more tolerant to low-temperature stress than Kas. Moreover, chloroplast morphology was more normal (e.g., oval) in Kos than in Kas at 17 °C. The comparative transcriptome analysis revealed 610 up-regulated differentially expressed genes that were common to all four comparisons. Furthermore, carotenoid biosynthesis was identified as a critical pathway for the Kos response to chilling stress. The genes in the carotenoid biosynthesis pathway were expressed at higher levels in Kos than in Kas at 17 °C, which was in accordance with the higher leaf carotenoid content in Kos than in Kas. The lycopene β-cyclase and lycopene ε-cyclase activities increased more in Kos than in Kas. Additionally, the increases in the violaxanthin de-epoxidase and carotenoid hydroxylase activities in Kos seedlings resulted in the accumulation of zeaxanthin and lutein and mitigated the effects of chilling stress on chloroplasts. These findings have clarified the molecular mechanisms underlying the chilling tolerance of rice seedlings during the greening process.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056009, Hebei, People's Republic of China
| | - Xiang Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056009, Hebei, People's Republic of China
| | - Yulin Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Guangmei Ji
- Guizhou Rice Research Institute, Guiyang, 550009, Guizhou, People's Republic of China
| | - Xinling Ma
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Yuping Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Jing Xiang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Yaliang Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhigang Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Liangtao Li
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056009, Hebei, People's Republic of China.
| | - Huizhe Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China.
| | - Yikai Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Puig ML, Rodríguez AA, Vidal AA, Bezus R, Maiale SJ. Patterns of physiological parameters and nitrogen partitioning in flag leaf explain differential grain protein content in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:457-464. [PMID: 34717177 DOI: 10.1016/j.plaphy.2021.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The grain protein content (GPC) in rice is low, and more efforts with agronomic and molecular approaches were performed to increase them. However, the rice research focusing on the plant physiological behaviour that modulates the phenomenon of grain protein filling is very scarce. This work contains physiological parameters related to photosynthetic activity in the flag leaf in the grain filling period and N partitioning assays of high (Nutriar) and traditional (Camba) GPC cultivars. Results indicated a higher photosynthetic capacity, a better capacity to provide CO2 to the chloroplast and a healthier PSII structure in Camba relative to Nutriar. Chlorophyll fluorescence parameters decreased more steeply over time in the high protein variety, and a strong negative correlation was observed between GPC and PSII structure parameters. N content in the flag leaf at anthesis showed lower values and higher remobilisation during the grain filling period in Nutriar compared to Camba. The results of this work suggested that the inactivation of some PSII structures in higher GPC cultivars is associated with N remobilisation and would contribute to an increase in the free N available to be translocated to the grain.
Collapse
Affiliation(s)
- María Lucrecia Puig
- Instituto Tecnológico de Chascomús (INTECH) Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Marino Km 8, Chascomús, CP:7130, Buenos Aires, Argentina
| | - Andrés Alberto Rodríguez
- Instituto Tecnológico de Chascomús (INTECH) Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Marino Km 8, Chascomús, CP:7130, Buenos Aires, Argentina
| | - Alfonso Andrés Vidal
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de la Plata, 60 y 119, La Plata, CP:1900, Buenos Aires, Argentina
| | - Rodolfo Bezus
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de la Plata, 60 y 119, La Plata, CP:1900, Buenos Aires, Argentina
| | - Santiago Javier Maiale
- Instituto Tecnológico de Chascomús (INTECH) Consejo Nacional de Investigaciones Científicas y Técnicas, Int. Marino Km 8, Chascomús, CP:7130, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Vilas JM, Corigliano MG, Clemente M, Maiale SJ, Rodríguez AA. Close relationship between the state of the oxygen evolving complex and rice cold stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110488. [PMID: 32540008 DOI: 10.1016/j.plantsci.2020.110488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 05/21/2023]
Abstract
The results of the present work suggested a relationship between the growth stability and functional/structural parameters associated to the primary photochemistry and oxygen evolving complex (OEC) in tolerant rice plants under suboptimal low temperatures (SLT) stress. This was concluded from the absence of changes in net photosynthetic rate and in fraction of reaction centers to reduce quinone A, and very small changes in P680 efficiency to trap and donate electrons to quinone A and in fraction of active OEC in tolerant plants under cold stress but not in sensitive plants. The SLT stress also induced OEC activity limitations in both genotypes, but in a greater extent in sensitive plants. However, an assay using an artificial electron donor to replace OEC indicated that the P680+ capacity to accept electrons was not altered in both genotypes under SLT stress from the beginning of the stress treatment, suggesting that the OEC structure stability is related to rice SLT tolerance to sustain the photosynthesis. This hypothesis was also supported by the fact that tolerant plants but not sensitive plants did not alter the gene expression and protein content of PsbP under SLT stress, an OEC subunit with a role in stabilizing of OEC structure.
Collapse
Affiliation(s)
- Juan Manuel Vilas
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, INTECH-CONICET-UNSAM, Chascomús, Argentina.
| | | | - Marina Clemente
- Laboratorio de Biotecnología Vegetal, INTECH-CONICET-UNSAM, Chascomús, Argentina.
| | - Santiago Javier Maiale
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, INTECH-CONICET-UNSAM, Chascomús, Argentina.
| | - Andrés Alberto Rodríguez
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, INTECH-CONICET-UNSAM, Chascomús, Argentina.
| |
Collapse
|
5
|
Gázquez A, Abdelgawad H, Baggerman G, Van Raemdonck G, Asard H, Maiale SJ, Rodríguez AA, Beemster GTS. Redox homeostasis in the growth zone of the rice leaf plays a key role in cold tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1053-1066. [PMID: 31624838 DOI: 10.1093/jxb/erz455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
We analysed the cellular and molecular changes in the leaf growth zone of tolerant and sensitive rice varieties in response to suboptimal temperatures. Cold reduced the final leaf length by 35% and 51% in tolerant and sensitive varieties, respectively. Tolerant lines exhibited a smaller reduction of the leaf elongation rate and greater compensation by an increased duration of leaf growth. Kinematic analysis showed that cold reduced cell production in the meristem and the expansion rate in the elongation zone, but the latter was compensated for by a doubling of the duration of cell expansion. We performed iTRAQ proteome analysis on proliferating and expanding parts of the leaf growth zone. We identified 559 and 542 proteins, of which 163 and 210 were differentially expressed between zones, and 96 and 68 between treatments, in the tolerant and sensitive lines, respectively. The categories protein biosynthesis and redox homeostasis were significantly overrepresented in the up-regulated proteins. We therefore measured redox metabolites and enzyme activities in the leaf growth zone, demonstrating that tolerance of rice lines to suboptimal temperatures correlates with the ability to up-regulate enzymatic antioxidants in the meristem and non-enzymatic antioxidants in the elongation zone.
Collapse
Affiliation(s)
- Ayelén Gázquez
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, IIB-INTECH - CONICET - UNSAM, Chascomús, Argentina
| | - Hamada Abdelgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Department of Botany and Microbiology, Science Faculty, Beni-Suef University, Beni-Suef, Egypt
| | - Geert Baggerman
- Centre for Proteomics (CFP) Core Facility, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Systemic Physiological & Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Geert Van Raemdonck
- Centre for Proteomics (CFP) Core Facility, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Santiago Javier Maiale
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, IIB-INTECH - CONICET - UNSAM, Chascomús, Argentina
| | - Andrés Alberto Rodríguez
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, IIB-INTECH - CONICET - UNSAM, Chascomús, Argentina
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|