1
|
Su-Zhou C, Durand M, Aphalo PJ, Martinez-Abaigar J, Shapiguzov A, Ishihara H, Liu X, Robson TM. Weaker photosynthetic acclimation to fluctuating than to corresponding steady UVB radiation treatments in grapevines. PHYSIOLOGIA PLANTARUM 2024; 176:e14383. [PMID: 38859677 DOI: 10.1111/ppl.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.
Collapse
Affiliation(s)
- Chenxing Su-Zhou
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Alexey Shapiguzov
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Finland
| | - Hirofumi Ishihara
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, UK
| |
Collapse
|
2
|
Cioffi E, Comune L, Piccolella S, Buono M, Pacifico S. Quercetin 3- O-Glucuronide from Aglianico Vine Leaves: A Selective Sustainable Recovery and Accumulation Monitoring. Foods 2023; 12:2646. [PMID: 37509738 PMCID: PMC10378925 DOI: 10.3390/foods12142646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, as part of sustainable development policies, the revaluation of end-of-life products has become more and more widespread. In terms of sustainability, in a scenario of circular economy food sustainability aims, inter alia, at making an effective re-use of natural resources as a starting point for the obtainment of high added-value products. With the aim of promoting the valorization of the wine sector wastes, the present study took into account the leaves of Vitis vinifera L. cv. Aglianico from the Campania Region (Italy). The use of deep eutectic solvents as a greener alternative to the most common organic solvents, joint to ultrasound-assisted maceration, and LC-MS tools, allowed us to define for the first time a six-month quantitative variation of flavonol derivatives, and in particular of quercetin 3-O-glucuronide, based on the collection time and the leaf height on the grapevine. Results underlined that the influence of abiotic factors, such as exposure to sunlight, which is pivotal in the biosynthesis of such compounds, should be strictly considered for their full recovery.
Collapse
Affiliation(s)
- Elena Cioffi
- Department of Engineering, University of Campania "L. Vanvitelli", I-81031 Aversa, Italy
| | - Lara Comune
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", I-81100 Caserta, Italy
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", I-81100 Caserta, Italy
| | - Mario Buono
- Department of Engineering, University of Campania "L. Vanvitelli", I-81031 Aversa, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", I-81100 Caserta, Italy
| |
Collapse
|
3
|
Yin H, Wang L, Wang F, Xi Z. Effects of UVA disappearance and presence on the acylated anthocyanins formation in grape berries. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100142. [PMID: 36281335 PMCID: PMC9587524 DOI: 10.1016/j.fochms.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
UVA block inhibited acylated anthocyanin formation. UVA presence promoted acylated anthocyanin formation. Peonidin for acetylation and p-coumaroylation primarily respond to UVA. A total of 3962 DEGs and 136 DAMs were identified. VvMYBA1 played a key role in co-expression network.
Ultraviolet A (UVA), the major component of the UV, plays a crucial role in formatting the characteristics of color in wine grapes by influencing its anthocyanin composition and contents. Results showed that anthocyanin biosynthesis was suppressed by UVA screening and enhanced by irradiation. The acetylation and p-coumaroylation of anthocyanins were more pronounced and showed positive correlation with a* and negative correlation with L*, b*, C*, and h, thereby leading to changes in color. Weighted gene co-expression network analysis showed that two modules (red and turquoise) were significantly related to the acetylation and p-coumaroylation of peonidin. In addition, relative gene expression assays and correlation analysis also indicated that VvMYBA1 might influence anthocyanin accumulation by directly regulating VvOMT expression and increasing the flux to the vacuole through VvGST4. In conclusion, the results helped in improving our understanding of the role of UVA in skin color formation.
Collapse
Affiliation(s)
- Haining Yin
- College of Enology, Northwest A&F University, Yangling, Shannxi Province, People’s Republic of China
| | - Lin Wang
- College of Enology, Northwest A&F University, Yangling, Shannxi Province, People’s Republic of China
| | - Fucheng Wang
- Penglai Vine and Wine Technology Research Extension Center, Penglai, Shandong Province, People’s Republic of China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, Shannxi Province, People’s Republic of China
- Corresponding author.
| |
Collapse
|
4
|
Photoprotective Role of Photosynthetic and Non-Photosynthetic Pigments in Phillyrea latifolia: Is Their "Antioxidant" Function Prominent in Leaves Exposed to Severe Summer Drought? Int J Mol Sci 2021; 22:ijms22158303. [PMID: 34361067 PMCID: PMC8347396 DOI: 10.3390/ijms22158303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their “antioxidant” function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological and biochemical analyses in spring and summer. We also investigated the functional role of the major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense photooxidative stress, particularly during the central hours of the day. In parallel, a significant daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives, mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, countering the drought-induced photooxidative stress. We concluded that seasonal and daily changes in photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible photodamage and to cope successfully with the Mediterranean harsh climate.
Collapse
|
5
|
Hartikainen SM, Pieristè M, Lassila J, Robson TM. Seasonal Patterns in Spectral Irradiance and Leaf UV-A Absorbance Under Forest Canopies. FRONTIERS IN PLANT SCIENCE 2020; 10:1762. [PMID: 32133015 PMCID: PMC7040076 DOI: 10.3389/fpls.2019.01762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/17/2019] [Indexed: 05/05/2023]
Abstract
Plants commonly respond to UV radiation through the accumulation of flavonoids and related phenolic compounds which potentially ameliorate UV-damage to crucial internal structures. However, the seasonal dynamics of leaf flavonoids corresponding to epidermal UV absorbance is highly variable in nature, and it remains uncertain how environmental factors combine to govern flavonoid accumulation and degradation. We studied leaf UV-A absorbance of species composing the understorey plant community throughout two growing seasons under five adjacent tree canopies in southern Finland. We compared the relationship between leaf flavonol index (Iflav-repeatedly measured with an optical leaf clip Dualex) and measured spectral irradiance, understorey and canopy phenology, air temperature and snowpack variables, whole leaf flavonoid extracts, and leaf age. Strong seasonal patterns and stand-related differences were apparent in Iflav of both understorey plant communities and individual species, including divergent trends in Iflav during spring and autumn. Comparing the heterogeneity of the understorey light environment and its spectral composition in looking for potential drivers of seasonal changes in Iflav, we found that unweighted UV-A irradiance, or the effective UV dose calculated according to the biological spectral weighting function (BSWF) for plant growth (PG action spectrum), in understorey shade had a strong relationship with Iflav. Furthermore, understorey species seemed to adjust Iflav to low background diffuse irradiance rather than infrequent high direct-beam irradiance in sunflecks during summer, since leaves produced during or after canopy closure had low Iflav. In conclusion, we found the level of epidermal flavonoids in forest understorey species to be plastic, adjusting to climatic conditions, and differing according to species' leaf retention strategy and new leaf production, all of which contribute to the seasonal trends in leaf flavonoids found within forest stands.
Collapse
Affiliation(s)
- Saara Maria Hartikainen
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marta Pieristè
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Normandie Université, UNIROUEN, IRSTEA, ECODIV, FR Scale CNRS 3730, Rouen, France
| | - Joose Lassila
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Thomas Matthew Robson
- Canopy Spectral Ecology and Ecophysiology Group (CanSEE), Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|