1
|
Koc YE, Aycan M, Mitsui T. Exogenous proline suppresses endogenous proline and proline-production genes but improves the salinity tolerance capacity of salt-sensitive rice by stimulating antioxidant mechanisms and photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108914. [PMID: 38981207 DOI: 10.1016/j.plaphy.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Salinity is a critical environmental stress factor that significantly reduces crop productivity and yield. A mutant B-type response regulator gene (hst1) has been shown to promote salinity tolerance in the YNU genotype. Previous studies on the hst1 gene showed a higher proline production capacity under salt stress. Using almost identical genetic backgrounded salt-tolerant (YNU) and salt-sensitive (Sister line) rice genotypes, we tested the function of proline in the hst1 gene salinity-tolerance mechanism by applying exogenous proline under control and salt-stress conditions. Morpho-physiological, biochemical, and molecular analysis of ST and SS plants was performed to clarify the salinity tolerance mechanism mediated by the exogenous proline. The ST and SS genotypes accumulated exogenous proline, and the ST genotype has higher proline levels than the SS genotype. However, exogenous proline improved salt tolerance only in the SS genotype. Exogenous proline promotes plant and root growth by stimulating photosynthetic pigments and photosynthesis. The exogenous proline has a reductive effect on MDA, and H2O2 protects plants against ROS. Interestingly, exogenous proline lowers Na+ and raises K+ accumulations under salt stress. In the SS genotype, exogenous proline increases the activity of antioxidant enzymes (SOD, CAT, and APX) to protect against salinity-induced damage. The exogenous proline application down-regulates proline-synthesis genes (OsP5CS1 and OsP5CR) and up-regulates proline-degradation genes. Also, exogenous proline increases the expression of the OsSalT and OsGRAS29 genes, improving salinity tolerance in the SS genotype. Our study has demonstrated that proline plays a significant role in conferring salt tolerance with the salinity-tolerance-related hst1 mechanisms.
Collapse
Affiliation(s)
- Yunus Emre Koc
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-21-81, Japan; General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, 06800, Turkiye
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| | - Toshiaki Mitsui
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-21-81, Japan; Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan.
| |
Collapse
|
2
|
Salgado AL, Glassmire AE, Sedio BE, Diaz R, Stout MJ, Čuda J, Pyšek P, Meyerson LA, Cronin JT. Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass. J Chem Ecol 2023; 49:437-450. [PMID: 37099216 DOI: 10.1007/s10886-023-01425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.
Collapse
Affiliation(s)
- Ana L Salgado
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Andrea E Glassmire
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado, 0843-03092, Republic of Panama
| | - Rodrigo Diaz
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michael J Stout
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jan Čuda
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, CZ -128 44, Czech Republic
| | - Laura A Meyerson
- Department of Natural Resource Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|
3
|
Lu L, Chen S, Yang W, Wu Y, Liu Y, Yin X, Yang Y, Yang Y. Integrated transcriptomic and metabolomic analyses reveal key metabolic pathways in response to potassium deficiency in coconut ( Cocos nucifera L.) seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1112264. [PMID: 36860901 PMCID: PMC9968814 DOI: 10.3389/fpls.2023.1112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potassium ions (K+) are important for plant growth and crop yield. However, the effects of K+ deficiency on the biomass of coconut seedlings and the mechanism by which K+ deficiency regulates plant growth remain largely unknown. Therefore, in this study, we compared the physiological, transcriptome, and metabolite profiles of coconut seedling leaves under K+-deficient and K+-sufficient conditions using pot hydroponic experiments, RNA-sequencing, and metabolomics technologies. K+ deficiency stress significantly reduced the plant height, biomass, and soil and plant analyzer development value, as well as K content, soluble protein, crude fat, and soluble sugar contents of coconut seedlings. Under K+ deficiency, the leaf malondialdehyde content of coconut seedlings were significantly increased, whereas the proline (Pro) content was significantly reduced. Superoxide dismutase, peroxidase, and catalase activities were significantly reduced. The contents of endogenous hormones such as auxin, gibberellin, and zeatin were significantly decreased, whereas abscisic acid content was significantly increased. RNA-sequencing revealed that compared to the control, there were 1003 differentially expressed genes (DEGs) in the leaves of coconut seedlings under K+ deficiency. Gene Ontology analysis revealed that these DEGs were mainly related to "integral component of membrane," "plasma membrane," "nucleus", "transcription factor activity," "sequence-specific DNA binding," and "protein kinase activity." Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the DEGs were mainly involved in "MAPK signaling pathway-plant," "plant hormone signal transduction," "starch and sucrose metabolism," "plant-pathogen interaction," "ABC transporters," and "glycerophospholipid metabolism." Metabolomic analysis showed that metabolites related to fatty acids, lipidol, amines, organic acids, amino acids, and flavonoids were generally down-regulated in coconut seedlings under K+ deficiency, whereas metabolites related to phenolic acids, nucleic acids, sugars, and alkaloids were mostly up-regulated. Therefore, coconut seedlings respond to K+ deficiency stress by regulating signal transduction pathways, primary and secondary metabolism, and plant-pathogen interaction. These results confirm the importance of K+ for coconut production, and provide a more in-depth understanding of the response of coconut seedlings to K+ deficiency and a basis for improving K+ utilization efficiency in coconut trees.
Collapse
Affiliation(s)
- Lilan Lu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Siting Chen
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Weibo Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yingying Liu
- School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Xinxing Yin
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yanfang Yang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Xiong W, Wang Y, Guo Y, Tang W, Zhao Y, Yang G, Pei Y, Chen J, Song X, Sun J. Transcriptional and Metabolic Responses of Maize Shoots to Long-Term Potassium Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:922581. [PMID: 35812972 PMCID: PMC9260415 DOI: 10.3389/fpls.2022.922581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Potassium is important for plant growth and crop yield. However, the effects of potassium (K+) deficiency on silage maize biomass yield and how maize shoot feedback mechanisms of K+ deficiency regulate whole plant growth remains largely unknown. Here, the study aims to explore the maize growth, transcriptional and metabolic responses of shoots to long-term potassium deficiency. Under the K+ insufficiency condition, the biomass yield of silage maize decreased. The transcriptome data showed that there were 922 and 1,107 differential expression genes in DH605 and Z58, respectively. In the two varieties, 390 differently expressed overlapping genes were similarly regulated. These genes were considered the fundamental responses to K+ deficiency in maize shoots. Many stress-induced genes are involved in transport, primary and secondary metabolism, regulation, and other processes, which are involved in K+ acquisition and homeostasis. Metabolic profiles indicated that most amino acids, phenolic acids, organic acids, and alkaloids were accumulated in shoots under K+ deficiency conditions and part of the sugars and sugar alcohols also increased. It revealed that putrescine and putrescine derivatives were specifically accumulated under the K+ deficiency condition, which may play a role in the feedback regulation of shoot growth. These results confirmed the importance of K+ on silage maize production and provided a deeper insight into the responses to K+ deficiency in maize shoots.
Collapse
Affiliation(s)
- Wangdan Xiong
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yujian Wang
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Yongzhen Guo
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wei Tang
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yiran Zhao
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yuhe Pei
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Jingtang Chen
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Xiyun Song
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Juan Sun
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Peng CY, Xu XF, Zhu HY, Ren YF, Niu HL, Hou RY, Wan XC, Cai HM. Metabolics and ionomics responses of tea leaves (Camellia sinensis (L.) O. Kuntze) to fluoride stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:65-75. [PMID: 33296847 DOI: 10.1016/j.plaphy.2020.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Tea plant (Camellia sinensis (L.) O. Kuntze) is known to accumulate high concentrations of fluoride (F) in its leaves; however, the underlying mechanism of F accumulation remains unclear. The main objective of this study was to investigate the homeostatic self-defense mechanisms of tea leaves to F supplementation (0, 5, 20, and 50 mgL-1) by metabolomics and ionomics. We identified a total of 96 up-regulated and 40 down-regulated metabolites in tea leaves treated with F. Of these different compounds, minor polypeptides, carbohydrates and amino acids played valuable roles in the F-tolerating mechanism of tea plant. After F treatments, the concentrations of sodium (Na), ferrum (Fe), manganese (Mn), and molybdenum (Mo) were significantly increased in tea leaves, whereas the aluminum (Al) was decreased. These findings suggest that the ionic balance and metabolites are attributable to the development of F tolerance, providing new insight into tea plant adaptation to F stress.
Collapse
Affiliation(s)
- Chuan-Yi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China.
| | - Xue-Feng Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China
| | - Hai-Yan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China
| | - Yin-Feng Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China
| | - Hui-Liang Niu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Ru-Yan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.
| | - Hui-Mei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China.
| |
Collapse
|