1
|
Srikant T, Gonzalo A, Bomblies K. Chromatin Accessibility and Gene Expression Vary Between a New and Evolved Autopolyploid of Arabidopsis arenosa. Mol Biol Evol 2024; 41:msae213. [PMID: 39404085 PMCID: PMC11518924 DOI: 10.1093/molbev/msae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Polyploids arise from whole-genome duplication (WGD) events, which have played important roles in genome evolution across eukaryotes. WGD can increase genome complexity, yield phenotypic novelty, and influence adaptation. Neo-polyploids have been reported to often show seemingly stochastic epigenetic and transcriptional changes, but this leaves open the question whether these changes persist in evolved polyploids. A powerful approach to address this is to compare diploids, neo-polyploids, and evolved polyploids of the same species. Arabidopsis arenosa is a species that allows us to do this-natural diploid and autotetraploid populations exist, while neo-tetraploids can be artificially generated. Here, we use ATAC-seq to assay local chromatin accessibility, and RNA-seq to study gene expression on matched leaf and petal samples from diploid, neo-tetraploid and evolved tetraploid A. arenosa. We found over 8,000 differentially accessible chromatin regions across all samples. These are largely tissue specific and show distinct trends across cytotypes, with roughly 70% arising upon WGD. Interestingly, only a small proportion is associated with expression changes in nearby genes. However, accessibility variation across cytotypes associates strongly with the number of nearby transposable elements. Relatively few genes were differentially expressed upon genome duplication, and ∼60% of these reverted to near-diploid levels in the evolved tetraploid, suggesting that most initial perturbations do not last. Our results provide new insights into how epigenomic and transcriptional mechanisms jointly respond to genome duplication and subsequent evolution of autopolyploids, and importantly, show that one cannot be directly predicted from the other.
Collapse
Affiliation(s)
- Thanvi Srikant
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Adrián Gonzalo
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Liu J, Wang J, Chen M, Meng W, Ding A, Chen M, Ding R, Tan M, Xiang Z. Multi-Omics Analyses Uncover the Mechanism Underlying Polyploidization-Enhanced Steviol Glycosides Biosynthesis in Stevia rebaudiana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2542. [PMID: 39339518 PMCID: PMC11434884 DOI: 10.3390/plants13182542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Stevia rebaudiana (Bertoni) is a valuable sweetener plant whose sweetness primarily derives from steviol glycosides (SGs), especially rebaudioside A (RA). Polyploidization has the potential to enhance the content of active ingredients in medicinal plants, making this strategy a promising avenue for genetic improvement. However, the underlying regulatory mechanisms that contribute to the fluctuating SGs content between autotetraploid and diploid stevia remain unclear. In this study, we employed metabolic analysis to identify 916 differentially accumulated metabolites (DAMs), with the majority, specifically terpenoids, flavonoids, and lipids, exhibiting upregulation due to polyploidization. Notably, the content of stevia's signature metabolite SGs (including RA, steviolbioside, and rebaudioside C), along with their precursor steviol, increased significantly after polyploidization. Furthermore, a comprehensive analysis of the transcriptome and metabolome revealed that the majority of differentially expressed genes (DEGs) involved in the SG-synthesis pathway (ent-KAH, ent-KS1, UGT73E1, UGT74G1, UGT76G1, UGT85C2, and UGT91D2) were upregulated in autotetraploid stevia, and these DEGs exhibited a positive correlation with the polyploidization-enhanced SGs. Additionally, multi-omics network analysis indicated that several transcription factor families (such as five NACs, four WRKYs, three MYBs, eight bHLHs, and three AP2/ERFs), various transporter genes (four ABC transporters, three triose-phosphate transporters, and two sugar efflux transporters for intercellular exchange), as well as microorganisms (including Ceratobasidium and Flavobacterium) were positively correlated with the accumulation of RA and steviol. Overall, our results indicate the presence of a regulatory circuit orchestrated by polyploidization, which recruits beneficial rhizosphere microbes and modulates the expression of genes associated with SG biosynthesis, ultimately enhancing the SG content in stevia. This finding will provide new insights for promoting the propagation and industrial development of stevia.
Collapse
Affiliation(s)
- Juan Liu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxue Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingjia Chen
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenna Meng
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Anping Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongping Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingpu Tan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxu Xiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Tang Q, Xu Y, Gao F, Xu Y, Cheng C, Deng C, Chen J, Yuan X, Zhang X, Su J. Transcriptomic and metabolomic analyses reveal the differential accumulation of phenylpropanoids and terpenoids in hemp autotetraploid and its diploid progenitor. BMC PLANT BIOLOGY 2023; 23:616. [PMID: 38049730 PMCID: PMC10696708 DOI: 10.1186/s12870-023-04630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Cannabis sativa, a dioecious plant that has been cultivated worldwide for thousands of years, is known for its secondary metabolites, especially cannabinoids, which possess several medicinal effects. In this study, we investigated the autopolyploidization effects on the biosynthesis and accumulation of these metabolites, transcriptomic and metabolomic analyses were performed to explore the gene expression and metabolic variations in industrial hemp autotetraploids and their diploid progenitors. RESULTS Through these analyses, we obtained 1,663 differentially expressed metabolites and 1,103 differentially expressed genes. Integrative analysis revealed that phenylpropanoid and terpenoid biosynthesis were regulated by polyploidization. No substantial differences were found in the cannabidiol or tetrahydrocannabinol content between tetraploids and diploids. Following polyploidization, some transcription factors, including nine bHLH and eight MYB transcription factors, affected the metabolic biosynthesis as regulators. Additionally, several pivotal catalytic genes, such as flavonol synthase/flavanone 3-hydroxylase, related to the phenylpropanoid metabolic pathway, were identified as being modulated by polyploidization. CONCLUSIONS This study enhances the overall understanding of the impact of autopolyploidization in C. sativa and the findings may encourage the application of polyploid breeding for increasing the content of important secondary metabolites in industrial hemp.
Collapse
Affiliation(s)
- Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Feng Gao
- Yunnan Academy of Industrial Hemp, Kunming, 650214, Yunnan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jiquan Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiaoge Yuan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
- Center for Industrial Hemp Science and Technology Innovation, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China.
| |
Collapse
|
4
|
Wu J, Zhou Q, Sang Y, Zhao Y, Kong B, Li L, Du J, Ma L, Lu M, Zhang P. In vitro induction of tetraploidy and its effects on phenotypic variations in Populus hopeiensis. BMC PLANT BIOLOGY 2023; 23:557. [PMID: 37957587 PMCID: PMC10641996 DOI: 10.1186/s12870-023-04578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Artificial induction of polyploidy is the most common and effective way to improve the biological properties of Populus and develop new varieties of this tree. In this study, in order to confirm and expand earlier findings, we established a protocol using colchicine and based on an efficient shoot regeneration system of leaf blades to induce tetraploidy in vitro in three genotypes from diploid Populus hopeiensis. The stomatal characteristics, leaf blade size, and growth were evaluated for diploids and tetraploids of three genotypes. RESULTS We found that genotype, preculture duration, colchicine concentration, and colchicine exposure time had highly significant effects on the tetraploid induction rate. The optimal protocol for inducing tetraploidy in P. hopeiensis was to preculture leaf blades for 7 days and then treat them for 4 days with 40 mg/L colchicine. The tetraploid induction rates of genotypes BT1, BT3, and BT8 were 21.2, 11.4 and 16.7%, respectively. A total of 136 tetraploids were identified by flow cytometry analysis and somatic chromosome counting. The stomatal length, width, and density of leaf blades significantly differed between diploid and tetraploid plants. Compared with their diploid counterparts, the tetraploids produced larger leaf blades and had a slower growth rate. Our findings further document the modified morphological characteristics of P. hopeiensis following whole-genome duplication (e.g., induced tetraploidy). CONCLUSIONS We established a protocol for in vitro induction of tetraploidy from diploid leaf blades treated with colchicine, which can be applied to different genotypes of P. hopeiensis.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qing Zhou
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaru Sang
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yifan Zhao
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bo Kong
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Li
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiahua Du
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lexun Ma
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Min Lu
- Institute of Genetics and Breeding, Inner Mongolia Academy of Forestry, Hohhot, 010010, China
| | - Pingdong Zhang
- State Key Laboratory of Efficient Production of Forest Resource, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Duan T, Sicard A, Glémin S, Lascoux M. Expression pattern of resynthesized allotetraploid Capsella is determined by hybridization, not whole-genome duplication. THE NEW PHYTOLOGIST 2023; 237:339-353. [PMID: 36254103 PMCID: PMC10099941 DOI: 10.1111/nph.18542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| | - Adrien Sicard
- Department of Plant BiologySwedish University of Agricultural Sciences750 07UppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
- UMR CNRS 6553 ECOBIOCampus Beaulieu, bât 14a, p.118, CS 7420535042RennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| |
Collapse
|
6
|
Wu J, Cheng X, Kong B, Zhou Q, Sang Y, Zhang P. In vitro octaploid induction of Populus hopeiensis with colchicine. BMC PLANT BIOLOGY 2022; 22:176. [PMID: 35387617 PMCID: PMC8985302 DOI: 10.1186/s12870-022-03571-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Autopolyploids, especially artificial lines, provide model systems for understanding the mechanisms of gene dosage effects on trait variation owing to their relatively uniform genetic background. Here, a protocol for in vitro octaploid induction of Populus hopeiensis from leaf blades with colchicine treatment was established through investigation of the effects of different pre-culture durations, colchicine concentrations, and exposure times. RESULTS We found that pre-culture duration, colchicine concentration, and exposure time had significant effects on the survival rate, shoot regeneration rate, and octaploid induction rate of P. hopeiensis leaf blades. The highest octaploid induction rate (8.61%) was observed when leaf blades pre-cultured for 9 days were treated for 4 days with 100 μM colchicine. The ploidy level of all regenerated plantlets was analyzed by flow cytometry and further confirmed by chromosome counting. A total of 14 octaploids were obtained. The stomatal length, width, and density of leaf blades significantly differed between tetraploid and octaploid plants. Compared with diploid and tetraploid plants, octaploids had a slower growth rate, smaller leaf blade size, and shorter internodes. CONCLUSIONS We established an effective protocol for inducing octaploids in vitro from autotetraploid P. hopeiensis leaf blades by colchicine treatment.
Collapse
Affiliation(s)
- Jian Wu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xuetong Cheng
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bo Kong
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qing Zhou
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaru Sang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Pingdong Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Zhang Z, Tan M, Zhang Y, Jia Y, Zhu S, Wang J, Zhao J, Liao Y, Xiang Z. Integrative analyses of targeted metabolome and transcriptome of Isatidis Radix autotetraploids highlighted key polyploidization-responsive regulators. BMC Genomics 2021; 22:670. [PMID: 34535080 PMCID: PMC8449450 DOI: 10.1186/s12864-021-07980-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Background Isatidis Radix, the root of Isatis indigotica Fort. (Chinese woad) can produce a variety of efficacious compound with medicinal properties. The tetraploid I. indigotica plants exhibit superior phenotypic traits, such as greater yield, higher bioactive compounds accumulation and enhanced stress tolerance. In this study, a comparative transcriptomic and metabolomic study on Isatidis Radix autotetraploid and its progenitor was performed. Results Through the targeted metabolic profiling, 283 metabolites were identified in Isatidis Radix, and 70 polyploidization-altered metabolites were obtained. Moreover, the production of lignans was significantly increased post polyploidization, which implied that polyploidization-modulated changes in lignan biosynthesis. Regarding the transcriptomic shift, 2065 differentially expressed genes (DEGs) were identified as being polyploidy-responsive genes, and the polyploidization-altered DEGs were enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. The further integrative analysis of polyploidy-responsive metabolome and transcriptome showed that 1584 DEGs were highly correlated with the 70 polyploidization-altered metabolites, and the transcriptional factors TFs-lignans network highlighted 10 polyploidy-altered TFs and 17 fluctuated phenylpropanoid pathway compounds. Conclusions These results collectively indicated that polyploidization contributed to the high content of active compounds in autotetraploid roots, and the gene–lignan pathway network analysis highlighted polyploidy–responsive key functional genes and regulators. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07980-w.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yingying Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yue Jia
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuxian Zhu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiang Wang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiajing Zhao
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yueyue Liao
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zengxu Xiang
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
8
|
Zhou C, Liu X, Li X, Zhou H, Wang S, Yuan Z, Zhang Y, Li S, You A, Zhou L, He Z. A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling. RICE (NEW YORK, N.Y.) 2021; 14:72. [PMID: 34347189 PMCID: PMC8339180 DOI: 10.1186/s12284-021-00515-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/27/2021] [Indexed: 05/16/2023]
Abstract
Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor, Oryza sativa ssp. indica 93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Xinglei Li
- Bioacme Biotechnology Co., Ltd., Wuhan, 430056, China
| | - Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China
| | - Sijia Wang
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China
| | - Zhu Yuan
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China
| | - Yonghong Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
9
|
Chen Y, Xu H, He T, Gao R, Guo G, Lu R, Chen Z, Liu C. Comparative Analysis of Morphology, Photosynthetic Physiology, and Transcriptome Between Diploid and Tetraploid Barley Derived From Microspore Culture. FRONTIERS IN PLANT SCIENCE 2021; 12:626916. [PMID: 33747007 PMCID: PMC7970760 DOI: 10.3389/fpls.2021.626916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/05/2021] [Indexed: 06/01/2023]
Abstract
Polyploids play an important role in the breeding of plant for superior characteristics, and many reports have focused on the effects upon photosynthesis from polyploidization in some plant species recently, yet surprisingly little of this is known for barley. In this study, homozygous diploid and tetraploid plants, derived from microspore culturing of the barley cultivar "H30," were used to assess differences between them in their cellular, photosynthetic, and transcriptomic characteristics. Our results showed that tetraploid barley has the distinct characteristics of polyploids, namely thicker and heavier leaves, enlarged stomata size or stomatal guard cell size, and more photosynthetic pigments and improved photosynthesis (especially under high light intensity). This enhanced photosynthesis of tetraploid barley was confirmed by several photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), maximum net photosynthetic rate (Pmax), light saturation point (LSP), maximum RuBP saturated rate carboxylation (Vcmax), and maximum rate of electron transport (Jmax). Transcriptomic analyses revealed that just ~2.3% of all detected genes exhibited differential expression patterns [i.e., differentially expressed genes (DEGs)], and that most of these - 580 of 793 DEGs in total - were upregulated in the tetraploid barley. The follow-up KEGG analysis indicated that the most enriched pathway was related to photosynthesis-antenna proteins, while the downregulation of DEGs was related mainly to the light-harvesting cholorophyII a/b-binding protein (Lhcb1) component, both validated by quantitative PCR (qPCR). Taken together, our integrated analysis of morphology, photosynthetic physiology, and transcriptome provides evidences for understanding of how polyploidization enhances the photosynthetic capacity in tetraploids of barley.
Collapse
Affiliation(s)
- Yunyun Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Hongwei Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Ting He
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Runhong Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Guimei Guo
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Biotechnology Research Institute, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| |
Collapse
|
10
|
Basharat S, Huang Z, Gong M, Lv X, Ahmed A, Hussain I, Li J, Du G, Liu L. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Gantait S, Mukherjee E. Induced autopolyploidy-a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. J Genet Eng Biotechnol 2021; 19:4. [PMID: 33417015 PMCID: PMC7794262 DOI: 10.1186/s43141-020-00109-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Background Induced polyploidy serves as an efficient approach in extricating genetic potential of cells. During polyploidization, multiple sets of chromosomes are derived from the same organism resulting in the development of an autopolyploid. Alterations owing to artificially induced polyploidy level significantly influence internal homeostatic condition of resultant cells. Main text Induced autopolyploidy transpires as a result of an increase in the size of genome without any change in elementary genetic material. Such autopolyploidy, artificially induced via application of antimitotic agents, brings about a lot of beneficial changes in plants, coupled with very few detrimental effects. Induced autopolyploids exhibit superior adaptability, endurance to biotic and abiotic stresses, longer reproductive period and enzyme diversity coupled with enhanced rate of photosynthesis and gene action in comparison to their diploid counterparts. However, reduced rate of transpiration and growth, delay in flowering are some of the demerits of autopolyploids. Inspite of these slight unfavourable outcomes, induced autopolyploidization has been utilized in an array of instances wherein genetic improvement of plant species is concerned, since this technique usually boosts the biomass of concerned economic parts of a plant. In other way, it is also evident that multiplication of genome bestows enhanced production of secondary metabolites, which has contributed to a significant commercial value addition especially for plants with medicinal importance, in particular. Conclusion This review makes an attempt to explore the system and success of antimitotic agents vis-à-vis artificial autopolyploidization, interfered with the biosynthesis-cum-production of secondary metabolites having cutting-edge pharmaceutical importance.
Collapse
Affiliation(s)
- Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Eashan Mukherjee
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| |
Collapse
|