1
|
Wei Y, Shi J, Xie X, Zhang F, Dong H, Li Y, Bi F, Huang X, Dou T. Transcriptome sequence reveal the roles of MaGME777 and MabHLH770 in drought tolerance in Musa acuminata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112495. [PMID: 40258402 DOI: 10.1016/j.plantsci.2025.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Banana, a globally cultivated fruit, faces significant constraints in distribution and sustainable production due to drought stress. This study investigated drought tolerance in Cavendish bananas using RNA-seq time-course analysis and molecular biology experiments. Plants were subjected to dehydration treatments, and physiological indicators such as electrolyte leakage, proline content, malonaldehyde, peroxidase activity, and hydrogen peroxide content were assessed. RNA-Seq and qRT-PCR were used to analyze transcriptional changes under drought. Weighted gene co-expression network (WGCNA) analysis identified thousands of differentially expressed genes (DEGs) at different time points, with a core set of 2660 DEGs consistently identified. KEGG enrichment analysis revealed MaGME777, a glycolysis/gluconeogenesis gene, as a potential drought resistance regulator. Virus-mediated gene silencing (VIGS) of MaGME777 reduced drought tolerance in bananas. Yeast one-hybrid (Y1H) and luciferase reporter assays demonstrated that the transcription factor MabHLH770 directly binds and activates the MaGME777 promoter. VIGS downregulation of MabHLH770 also reduced drought tolerance. In conclusion, this study revealed that MabHLH770 is a positive regulator of drought stress, by targeting MaGME777 promoter and activating their expression to enhance drought tolerance. These findings provide a foundation for developing drought-resistant banana cultivars through molecular breeding approaches.
Collapse
Affiliation(s)
- Yuchen Wei
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China
| | - Jingfang Shi
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, AgroBiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xueyi Xie
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Feng Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China
| | - Huizhen Dong
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China
| | - Yaoyao Li
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Fangcheng Bi
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xiaosan Huang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China.
| | - Tongxin Dou
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
2
|
Yi X, Yuan X, Zhang M, Qin T, He Y, Ying J, Wang H, Xu L, Liu L, Wang Y. Ethylene-Mediated RsCBF2 and RsERF18 Enhance Salt Tolerance by Directly Regulating Aquaporin Gene RsPIP2-1 in Radish (Raphanus sativus L.). PLANT, CELL & ENVIRONMENT 2025. [PMID: 40231425 DOI: 10.1111/pce.15547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 01/17/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Salt stress is a major environmental factor limiting the production and quality of plants worldwide. Radish (Raphanus sativus L.), one of the most important root crops, is susceptible to salt stress worldwide. Plasma membrane intrinsic proteins (PIPs) have been identified to play a crucial role in regulating plants' salt tolerance. However, the underlying molecular regulatory mechanisms involved in salt stress tolerance are largely unknown. Here, a salt-induced water transport gene RsPIP2-1 associated with the regulatory mechanisms in response to salt stress was clarified in radish. Overexpression of RsPIP2-1 had high-water channel and H2O2 transport activity in Xenopus laevis oocytes and yeast, and it also conferred prominently salt tolerance through promoting reactive oxygen species (ROS) scavenging and enhancing antioxidant enzyme activity in transgenic radish. Moreover, yeast one-hybrid (Y1H) was used to screen the upstream regulators of RsPIP2-1, and two ethylene-responsive transcription factors including RsCBF2 and RsERF18 were identified. Y1H, dual-luciferase assay (DLA) and electrophoretic mobility shift assays (EMSA) showed that these two genes could active the transcription of RsPIP2-1 by directly binding to the DRE/CRT element and GCC-box element in its promoter. In addition, the salt tolerance and the expression levels of these two transcription factors could be significantly upregulated when treated with exogenous application of an ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), while the plants' resistance as well as the expression patterns could be reduced when exposure to the inhibitor of ethylene action (AgNO3), suggesting that RsCBF2 and RsERF18 positively regulated the salt tolerance in a manner of dependent on ethylene synthesis pathway. Taken together, these findings uncover a novel transcriptional regulatory module based on the RsCBF2/RsERF18-RsPIP2-1 underlying salt tolerance in radish and could provide new insights into the salt-tolerant vegetable crop breeding programs.
Collapse
Affiliation(s)
- Xiaofang Yi
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqi Yuan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mi Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tiaojiao Qin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yiping He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haiyun Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Nidhi, Iqbal N, Khan NA. Synergistic effects of phytohormones and membrane transporters in plant salt stress mitigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109685. [PMID: 40007372 DOI: 10.1016/j.plaphy.2025.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Plants are frequently exposed to high salinity, negatively affecting their development and productivity. This review examined the complex roles of membrane transporters (MTs) and phytohormones in mediating salt stress. MTs are crucial in capturing sodium ions (Na+) and maintaining a delicate balance between sodium (Na+) and potassium (K+), essential for supporting cellular homeostasis and enhancing overall plant health. These MTs were instrumental in regulating ion balance and promoting the absorption and segregation of vital nutrients, thereby enhancing salt stress tolerance. Various plant hormones, including abscisic acid, auxin, ethylene, cytokinin, and gibberellins, along with gaseous growth regulators such as nitric oxide and hydrogen sulfide, collaborate to regulate and synchronize numerous aspects of plant growth, development, and stress responses to environmental factors. These transporters and other phytohormones, including brassinosteroids, melatonin, and salicylic acid, also collaborated to initiate adaptation processes, such as controlling osmotic pressure, removing ions, and initiating stress signaling pathways. This study consolidated the advancements in understanding the molecular and physiological processes contributing to plant salt tolerance, emphasizing the intricate relationships between MTs and phytohormones. The aim was to elucidate these interactions to promote further research and develop strategies for enhancing plant salt tolerance.
Collapse
Affiliation(s)
- Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Li X, Guo Y, Ling Q, Guo Z, Lei Y, Feng X, Wu J, Zhang N. Advances in the Structure, Function, and Regulatory Mechanism of Plant Plasma Membrane Intrinsic Proteins. Genes (Basel) 2024; 16:10. [PMID: 39858557 PMCID: PMC11765485 DOI: 10.3390/genes16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Plasma membrane intrinsic proteins (PIPs), as members of the aquaporin (AQPs) family, can transport not only water but also urea, CO2, H2O2, metal ions, and trace elements. They are crucial for maintaining water balance, substance transport, and responding to various stresses. This article delves into the structure, function, response mechanism, molecular mechanism, and regulatory mechanism of PIPs as a result of biological and abiotic stresses. It also summarizes current research trends surrounding PIPs and highlights potential research directions for further exploration. The aim is to assist researchers in related fields in gaining a more comprehensive understanding and precise insight into the advancements in PIP research.
Collapse
Affiliation(s)
- Xueting Li
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Yirong Guo
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Qiuping Ling
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Zhejun Guo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yawen Lei
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| |
Collapse
|
5
|
Han Y, Luo F, Liang A, Xu D, Zhang H, Liu T, Qi H. Aquaporin CmPIP2;3 links H2O2 signal and antioxidation to modulate trehalose-induced cold tolerance in melon seedlings. PLANT PHYSIOLOGY 2024; 197:kiae477. [PMID: 39250755 DOI: 10.1093/plphys/kiae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024]
Abstract
Cold stress severely restricts the growth and development of cold-sensitive crops. Trehalose (Tre), known as the "sugar of life", plays key roles in regulating plant cold tolerance by triggering antioxidation. However, the relevant regulatory mechanism remains unclear. Here, we confirmed that Tre triggers apoplastic hydrogen peroxide (H2O2) production and thus plays key roles in improving the cold tolerance of melon (Cucumis melo var. makuwa Makino) seedlings. Moreover, Tre treatment can promote the transport of apoplastic H2O2 to the cytoplasm. This physiological process may depend on aquaporins. Further studies showed that a Tre-responsive plasma membrane intrinsic protein 2;3 (CmPIP2;3) had strong H2O2 transport function and that silencing CmPIP2;3 significantly weakened apoplastic H2O2 transport and reduced the cold tolerance of melon seedlings. Yeast library and protein-DNA interaction technology were then used to screen 2 Tre-responsive transcription factors, abscisic acid-responsive element (ABRE)-binding factor 2 (CmABF2) and ABRE-binding factor 3 (CmABF3), which can bind to the ABRE motif of the CmPIP2;3 promoter and activate its expression. Silencing of CmABF2 and CmABF3 further dramatically increased the ratio of apoplastic H2O2/cytoplasm H2O2 and reduced the cold tolerance of melon seedlings. This study uncovered that Tre treatment induces CmABF2/3 to positively regulate CmPIP2;3 expression. CmPIP2;3 subsequently enhances the cold tolerance of melon seedlings by promoting the transport of apoplastic H2O2 into the cytoplasm for conducting redox signals and stimulating downstream antioxidation.
Collapse
Affiliation(s)
- Yuqing Han
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fei Luo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Adan Liang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Dongdong Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyi Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
6
|
Abdeldaym EA, Hassan HA, El-Mogy MM, Mohamed MS, Abuarab ME, Omar HS. Elevated concentrations of soil carbon dioxide with partial root-zone drying enhance drought tolerance and agro-physiological characteristics by regulating the expression of genes related to aquaporin and stress response in cucumber plants. BMC PLANT BIOLOGY 2024; 24:917. [PMID: 39354350 PMCID: PMC11443810 DOI: 10.1186/s12870-024-05310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/19/2024] [Indexed: 10/03/2024]
Abstract
Water scarcity and soil carbon dioxide elevation in arid regions are considered the most serious factors affecting crop growth and productivity. This study aimed to investigate the impacts of elevated CO2 levels (eCO2 at rates of 700 and 1000 ppm) on agro-physiological attributes to induce drought tolerance in cucumbers by activating the expression of genes related to aquaporin and stress response, which improved the yield of cucumber under two levels of irrigation water conditions [75% and 100% crop evapotranspiration (ETc)]. Therefore, two field experiments were conducted in a greenhouse with controlled internal climate conditions, at the Mohamed Naguib sector of the national company for protected agriculture, during the winter seasons of 2021-2022 and 2022-2023. The treatments included eCO2 in soil under normal and partial root zoon drying (PRD, 100% ETc Full irrigations, and 75% ETc). All the applied treatments were organized as a randomized complete block design (RCBD) and each treatment was replicated six times. Untreated plants were designed as control treatment (CO2 concentration was 400 ppm). The results of this study showed that elevating CO2 at 700 and 1000 ppm in soil significantly increased plant growth parameters, photosynthesis measurements, and phytohormones [indole acetic acid (IAA) and gibberellic acid (GA3)], under partial root-zone drying (75% ETc) and full irrigation conditions (100% ETc). Under PRD condition, eCO2 at 700 ppm significantly improved plant height (13.68%), number of shoots (19.88%), Leaf greenness index (SPAD value, 16.60%), root length (24.88%), fresh weight (64.77%) and dry weight (61.25%) of cucumber plant, when compared to untreated plants. The pervious treatment also increased photosynthesis rate, stomatal conductance, and intercellular CO2 concentration by 50.65%, 15.30% and 12.18%; respectively, compared to the control treatment. Similar findings were observed in nutrient concentration, carbohydrate content, Proline, total antioxidants in the leaf, and nutrients. In contrast, eCO2 at 700 ppm in the soil reduced the values of transpiration rate (6.33%) and Abscisic acid (ABA, 34.03%) content in cucumber leaves compared to untreated plants under both water levels. Furthermore, the results revealed that the gene transcript levels of the aquaporin-related genes (CsPIP1-2 and CsTIP4) significantly increased compared with a well-watered condition. The transcript levels of CsPIP improved the contribution rate of cell water transportation (intermediated by aquaporin's genes) and root or leaf hydraulic conductivity. The quantitative real-time PCR expression results revealed the upregulation of CsAGO1 stress-response genes in plants exposed to 700 ppm CO2. In conclusion, elevating CO2 at 700 ppm in the soil might be a promising technique to enhance the growth and productivity of cucumber plants in addition to alleviating the adverse effects of drought stresses.
Collapse
Affiliation(s)
- Emad A Abdeldaym
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Hassan A Hassan
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Mohamed M El-Mogy
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohamed S Mohamed
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Mohamed E Abuarab
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, PO box 12613, Giza, Egypt
| | - Hanaa S Omar
- Department of Genetics, Faculty of Agriculture, Cairo University, PO box 12613, Giza, Egypt.
| |
Collapse
|
7
|
Yuan S, Yin T, He H, Liu X, Long X, Dong P, Zhu Z. Phenotypic, Metabolic and Genetic Adaptations of the Ficus Species to Abiotic Stress Response: A Comprehensive Review. Int J Mol Sci 2024; 25:9520. [PMID: 39273466 PMCID: PMC11394708 DOI: 10.3390/ijms25179520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The Ficus genus, having radiated from the tropics and subtropics to the temperate zone worldwide, is the largest genus among woody plants, comprising over 800 species. Evolution of the Ficus species results in genetic diversity, global radiation and geographical differentiations, suggesting adaption to diverse environments and coping with stresses. Apart from familiar physiological changes, such as stomatal closure and alteration in plant hormone levels, the Ficus species exhibit a unique mechanism in response to abiotic stress, such as regulation of leaf temperature and retention of drought memory. The stress-resistance genes harbored by Ficus result in effective responses to abiotic stress. Understanding the stress-resistance mechanisms in Ficus provides insights into the genetic breeding toward stress-tolerant crop cultivars. Following upon these issues, we comprehensively reviewed recent progress concerning the Ficus genes and relevant mechanisms that play important roles in the abiotic stress responses. These highlight prospectively important application potentials of the stress-resistance genes in Ficus.
Collapse
Affiliation(s)
- Shengyun Yuan
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hourong He
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xinyi Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xueyan Long
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
8
|
Yu J, Tang L, Qiao F, Liu J, Li X. Physiological and Transcriptomic Analyses Reveal the Mechanisms Underlying Methyl Jasmonate-Induced Mannitol Stress Resistance in Banana. PLANTS (BASEL, SWITZERLAND) 2024; 13:712. [PMID: 38475558 DOI: 10.3390/plants13050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
Exogenous methyl jasmonate (MeJA) application has shown promising effects on plant defense under diverse abiotic stresses. However, the mechanisms underlying MeJA-induced stress resistance in bananas are unclear. Therefore, in this study, we treated banana plants with 100 μM MeJA before inducing osmotic stress using mannitol. Plant phenotype and antioxidant enzyme activity results demonstrated that MeJA improved osmotic stress resistance in banana plants. Thereafter, to explore the molecular mechanisms underlying MeJA-induced osmotic stress resistance in banana seedlings, we conducted high-throughput RNA sequencing (RNA-seq) using leaf and root samples of "Brazilian" banana seedlings treated with MeJA for 0 h and 8 h. RNA-seq analysis showed that MeJA treatment upregulated 1506 (leaf) and 3341 (root) genes and downregulated 1768 (leaf) and 4625 (root) genes. Then, we performed gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses on the differentially expressed genes. We noted that linoleic acid metabolism was enriched in both root and leaf samples, and the genes of this pathway exhibited different expression patterns; 9S-LOX genes were highly induced by MeJA in the leaves, whereas 13S-LOX genes were highly induced in the roots. We also identified the promoters of these genes, as the differences in response elements may contribute to tissue-specific gene expression in response to MeJA application in banana seedlings. Overall, the findings of this study provide insights into the mechanisms underlying abiotic stress resistance in banana that may aid in the improvement of banana varieties relying on molecular breeding.
Collapse
Affiliation(s)
- Jiaxuan Yu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropical Crop Breeding, Haikou 570228, China
| | - Lu Tang
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
| | - Fei Qiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China
| | - Juhua Liu
- National Key Laboratory for Tropical Crop Breeding, Haikou 570228, China
| | - Xinguo Li
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropical Crop Breeding, Haikou 570228, China
| |
Collapse
|
9
|
Sohail H, Noor I, Hasanuzzaman M, Geng S, Wei L, Nawaz MA, Huang Y, Yang L, Bie Z. CmoPIP1-4 confers drought tolerance in pumpkin by altering hydrogen sulfide signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108443. [PMID: 38479079 DOI: 10.1016/j.plaphy.2024.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 04/02/2024]
Abstract
Drought is a major limiting factor for the growth and development of pumpkins. Plasma membrane intrinsic proteins (PIPs) are major water channels that play a crucial role in the regulation of cellular water status and solute trafficking during drought conditions. CmoPIP1-4 is a plasma membrane-localized protein that is significantly upregulated in roots and leaves under drought-stress conditions. In this study, the overexpression of CmoPIP1-4 enhances drought resistance in yeast. In contrast, CRISPR-mediated CmoPIP1-4 knockout in pumpkin roots increased drought sensitivity. This increased drought sensitivity of CmoPIP1-4 knockout plants is associated with a decline in the levels of hydrogen sulfide (H2S) and abscisic acid (ABA), accompanied by an increase in water loss caused by greater levels of transpiration and stomatal conductance. In addition, the sensitivity of CmoPIP1-4 CRISPR plants is further aggravated by reduced antioxidative enzyme activity, decreased proline and sugar contents, and extensive root damage. Furthermore, expression profiles of genes such as CmoHSP70s, CmoNCED3, CmoNCED4, and others involved in metabolic activities were markedly reduced in CmoPIP1-4 CRISPR plants. Moreover, we also discovered an interaction between the drought-responsive gene CmoDCD and CmoPIP1-4, indicating their potential role in activating H2S-mediated signaling in pumpkin, which could confer drought tolerance. The findings of our study collectively demonstrate CmoPIP1-4 plays a crucial role in the regulation of H2S-mediated signaling, influencing stomatal density and aperture in pumpkin plants, and thereby enhancing their drought tolerance.
Collapse
Affiliation(s)
- Hamza Sohail
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Iqra Noor
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Shouyu Geng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Lanxing Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Muhammad Azher Nawaz
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yuan Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China.
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China.
| |
Collapse
|
10
|
Gupta P, Dhawan SS, Lal RK, Mishra A, Chanotiya CS. Low-temperature perception and modulations in Ocimum basilicum commercial cultivar CIM-Shishir: Biosynthetic potential with insight towards climate-smart resilience. Gene 2024; 896:148041. [PMID: 38036074 DOI: 10.1016/j.gene.2023.148041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The newly released interspecific hybrid variety CIM-Shishir, resulting from a cross between Ocimum basilicum and Ocimum kilimandscharicum claims to be a multicut, lodging resistant, cold tolerant, high essential oil yielding with linalool rich variety. It has a purple-green stem and has a unique feature and advantage of better survival in the winter season than other O. basilicum varieties, illustrating its physiological mechanisms for cold tolerance. In this study, we subjected both the CIM-Shishir variety and a control plant to cold stress to investigate the impact of low temperatures on various physiological, trichome developments, secondary metabolite constitution aspects related to essential oil production, and gene expression. The analysis revealed a significantly higher density and altered morphology of trichomes on the leaf surface of the variety subjected to low temperatures, indicating its adaptation to cold conditions. Furthermore, when comparing the treated plants under low-temperature stress, it was observed that the relative electrolyte leakage and Malondialdehyde (MDA) contents substantially increased in the control in contrast to the CIM-Shishir variety. This finding suggests that CIM-Shishir exhibits superior cold tolerance. Additionally, an increase in proline content was noted in the variety exposed to low temperatures compared to the control. Moreover, the chlorophyll and anthocyanin content gradually increased with prolonged exposure to low-temperature stress in the newly developed variety, indicating its ability to maintain photosynthetic capacity and adapt to cold conditions. The activities of superoxide dismutase (SOD) also increased under low-temperature conditions in the CIM-Shishir variety, further highlighting its cold tolerance behaviour. In our research, we investigated the comprehensive molecular mechanisms of cold response in Ocimum. We analyzed the expression of key genes associated with cold tolerance in two plant groups: the newly developed hybrid variety known as CIM-Shishir Ocimum, which exhibits cold tolerance, and the control plants susceptible to cold climates that include WRKY53, ICE1, HOS1, COR47, LOS15, DREB5, CBF4, LTI6, KIN, and ERD2. These genes exhibited significantly higher expression levels in the CIM-Shishir variety compared to the control, shedding light on the genetic basis of its cold tolerance. The need for climate-smart, resilient high-yielding genotype is of high importance due to varied climatic conditions as this will hit the yield drastically and further to the economic sectors including farmers and many industries that are dependent on the bioactive constituents of Ocimum.
Collapse
Affiliation(s)
- Pankhuri Gupta
- CSIR- Human Resource Development Centre Campus, Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Sunita Singh Dhawan
- Biotechnology Division, CSIR- Central Institute for Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226016, India.
| | - R K Lal
- Genetics and Plant Breeding Division, CSIR- Central Institute for Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Anand Mishra
- Genetics and Plant Breeding Division, CSIR- Central Institute for Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - C S Chanotiya
- Analytical Chemistry Division, CSIR- Central Institute for Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| |
Collapse
|
11
|
Zhang F, Ma J, Liu Y, Fang J, Wei S, Xie R, Han P, Zhao X, Bo S, Lu Z. A Multi-Omics Analysis Revealed the Diversity of the MYB Transcription Factor Family's Evolution and Drought Resistance Pathways. Life (Basel) 2024; 14:141. [PMID: 38255756 PMCID: PMC10820167 DOI: 10.3390/life14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The MYB transcription factor family can regulate biological processes such as ABA signal transduction to cope with drought stress, but its evolutionary mechanism and the diverse pathways of response to drought stress in different species are rarely reported. In this study, a total of 4791 MYB family members were identified in 908,757 amino acid sequences from 12 model plants or crops using bioinformatics methods. It was observed that the number of MYB family members had a linear relationship with the chromosome ploidy of species. A phylogenetic analysis showed that the MYB family members evolved in subfamily clusters. In response to drought stress, the pathways of MYB transcription factor families exhibited species-specific diversity, with closely related species demonstrating a higher resemblance. This study provides abundant references for drought resistance research and the breeding of wheat, soybean, and other plants.
Collapse
Affiliation(s)
- Fan Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Ying Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Jing Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Shuli Wei
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| |
Collapse
|
12
|
Jahed KR, Saini AK, Sherif SM. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1246093. [PMID: 37649996 PMCID: PMC10465183 DOI: 10.3389/fpls.2023.1246093] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Low temperature stress significantly threatens crop productivity and economic sustainability. Plants counter this by deploying advanced molecular mechanisms to perceive and respond to cold stress. Transmembrane proteins initiate these responses, triggering a series of events involving secondary messengers such as calcium ions (Ca2+), reactive oxygen species (ROS), and inositol phosphates. Of these, calcium signaling is paramount, activating downstream phosphorylation cascades and the transcription of cold-responsive genes, including cold-regulated (COR) genes. This review focuses on how plants manage freeze-induced damage through dual strategies: cold tolerance and cold avoidance. Tolerance mechanisms involve acclimatization to decreasing temperatures, fostering gradual accumulation of cold resistance. In contrast, avoidance mechanisms rely on cryoprotectant molecules like potassium ions (K+), proline, glycerol, and antifreeze proteins (AFPs). Cryoprotectants modulate intracellular solute concentration, lower the freezing point, inhibit ice formation, and preserve plasma membrane fluidity. Additionally, these molecules demonstrate antioxidant activity, scavenging ROS, preventing protein denaturation, and subsequently mitigating cellular damage. By forming extensive hydrogen bonds with water molecules, cryoprotectants also limit intercellular water movement, minimizing extracellular ice crystal formation, and cell dehydration. The deployment of cryoprotectants is a key adaptive strategy that bolsters plant resilience to cold stress and promotes survival in freezing environments. However, the specific physiological and molecular mechanisms underlying these protective effects remain insufficiently understood. Therefore, this review underscores the need for further research to elucidate these mechanisms and assess their potential impact on crop productivity and sustainability, contributing to the progressive discourse in plant biology and environmental science.
Collapse
Affiliation(s)
| | | | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, United States
| |
Collapse
|
13
|
Fei J, Wang Y, Cheng H, Wang H, Wu M, Sun F, Sun C. An Aquaporin Gene ( KoPIP2;1) Isolated from Mangrove Plant Kandelia obovata Had Enhanced Cold Tolerance of Transgenic Arabidopsis thaliana. Bioengineering (Basel) 2023; 10:878. [PMID: 37508905 PMCID: PMC10376877 DOI: 10.3390/bioengineering10070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Aquaporins (AQPs) are essential channel proteins that play central roles in maintaining water homeostasis. Here, a novel aquaporin gene, named KoPIP2;1, was cloned from the mangrove plant Kandelia obovata by RACE technology. The KoPIP2;1 gene was 1404 bp in length with an open reading frame (ORF) of 852 bp, encoded with 283 amino acids. Database comparisons revealed that KoPIP2;1 protein shared the highest identity (91.26%) with the aquaporin HbPIP2;2, which was isolated from Hevea brasiliensis. Gene expression analysis revealed that the KoPIP2;1 gene was induced higher in leaves than in stems and roots of K. obovata under cold stress. Transient expression of KoPIP2;1 in Nicotiana benthamiana epidermal cells revealed that the KoPIP2;1 protein was localized to the plasma membrane. Overexpressing KoPIP2;1 in Arabidopsis significantly enhanced the lateral root number of the transgenic lines. KoPIP2;1 transgenic Arabidopsis demonstrated better growth, elevated proline content, increased superoxide dismutase (SOD) and peroxidase (POD) activities, and reduced malondialdehyde (MDA) content compared with the wild-type Arabidopsis when exposed to cold stress. The findings suggest that overexpression of KoPIP2;1 probably conferred cold tolerance of transgenic Arabidopsis by enhancing osmoregulation and antioxidant capacity. This present data presents a valuable gene resource that contributes to the advancement of our understanding of aquaporins and their potential application in enhancing plant stress tolerance.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Youshao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hui Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Meilin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
14
|
Jan N, Rather AMUD, John R, Chaturvedi P, Ghatak A, Weckwerth W, Zargar SM, Mir RA, Khan MA, Mir RR. Proteomics for abiotic stresses in legumes: present status and future directions. Crit Rev Biotechnol 2023; 43:171-190. [PMID: 35109728 DOI: 10.1080/07388551.2021.2025033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legumes are the most important crop plants in agriculture, contributing 27% of the world's primary food production. However, productivity and production of Legumes is reduced due to increasing environmental stress. Hence, there is a pressing need to understand the molecular mechanism involved in stress response and legumes adaptation. Proteomics provides an important molecular approach to investigate proteins involved in stress response. Both the gel-based and gel-free-based techniques have significantly contributed to understanding the proteome regulatory network in leguminous plants. In the present review, we have discussed the role of different proteomic approaches (2-DE, 2 D-DIGE, ICAT, iTRAQ, etc.) in the identification of various stress-responsive proteins in important leguminous crops, including soybean, chickpea, cowpea, pigeon pea, groundnut, and common bean under variable abiotic stresses including heat, drought, salinity, waterlogging, frost, chilling and metal toxicity. The proteomic analysis has revealed that most of the identified differentially expressed proteins in legumes are involved in photosynthesis, carbohydrate metabolism, signal transduction, protein metabolism, defense, and stress adaptation. The proteomic approaches provide insights in understanding the molecular mechanism of stress tolerance in legumes and have resulted in the identification of candidate genes used for the genetic improvement of plants against various environmental stresses. Identifying novel proteins and determining their expression under different stress conditions provide the basis for effective engineering strategies to improve stress tolerance in crop plants through marker-assisted breeding.
Collapse
Affiliation(s)
- Nelofer Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | | | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Faculty of Horticulture, SKUAST-Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Jammu, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| |
Collapse
|
15
|
Xu Y, Hu W, Song S, Ye X, Ding Z, Liu J, Wang Z, Li J, Hou X, Xu B, Jin Z. MaDREB1F confers cold and drought stress resistance through common regulation of hormone synthesis and protectant metabolite contents in banana. HORTICULTURE RESEARCH 2023; 10:uhac275. [PMID: 36789258 PMCID: PMC9923210 DOI: 10.1093/hr/uhac275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
Adverse environmental factors severely affect crop productivity. Improving crop resistance to multiple stressors is an important breeding goal. Although CBFs/DREB1s extensively participate in plant resistance to abiotic stress, the common mechanism underlying CBFs/DREB1s that mediate resistance to multiple stressors remains unclear. Here, we show the common mechanism for MaDREB1F conferring cold and drought stress resistance in banana. MaDREB1F encodes a dehydration-responsive element binding protein (DREB) transcription factor with nuclear localization and transcriptional activity. MaDREB1F expression is significantly induced after cold, osmotic, and salt treatments. MaDREB1F overexpression increases banana resistance to cold and drought stress by common modulation of the protectant metabolite levels of soluble sugar and proline, activating the antioxidant system, and promoting jasmonate and ethylene syntheses. Transcriptomic analysis shows that MaDREB1F activates or alleviates the repression of jasmonate and ethylene biosynthetic genes under cold and drought conditions. Moreover, MaDREB1F directly activates the promoter activities of MaAOC4 and MaACO20 for jasmonate and ethylene syntheses, respectively, under cold and drought conditions. MaDREB1F also targets the MaERF11 promoter to activate MaACO20 expression for ethylene synthesis under drought stress. Together, our findings offer new insight into the common mechanism underlying CBF/DREB1-mediated cold and drought stress resistance, which has substantial implications for engineering cold- and drought-tolerant crops.
Collapse
Affiliation(s)
| | - Wei Hu
- Corresponding authors. E-mail: ; ;
| | | | - Xiaoxue Ye
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zehong Ding
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Juhua Liu
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Zhuo Wang
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Jingyang Li
- Haikou Experimental Station, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Xiaowan Hou
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Guangdong, China
| | - Biyu Xu
- Corresponding authors. E-mail: ; ;
| | | |
Collapse
|
16
|
Thingnam SS, Lourembam DS, Tongbram PS, Lokya V, Tiwari S, Khan MK, Pandey A, Hamurcu M, Thangjam R. A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes (Basel) 2023; 14:genes14020370. [PMID: 36833297 PMCID: PMC9957078 DOI: 10.3390/genes14020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The enormous perennial monocotyledonous herb banana (Musa spp.), which includes dessert and cooking varieties, is found in more than 120 countries and is a member of the order Zingiberales and family Musaceae. The production of bananas requires a certain amount of precipitation throughout the year, and its scarcity reduces productivity in rain-fed banana-growing areas due to drought stress. To increase the tolerance of banana crops to drought stress, it is necessary to explore crop wild relatives (CWRs) of banana. Although molecular genetic pathways involved in drought stress tolerance of cultivated banana have been uncovered and understood with the introduction of high-throughput DNA sequencing technology, next-generation sequencing (NGS) techniques, and numerous "omics" tools, unfortunately, such approaches have not been thoroughly implemented to utilize the huge potential of wild genetic resources of banana. In India, the northeastern region has been reported to have the highest diversity and distribution of Musaceae, with more than 30 taxa, 19 of which are unique to the area, accounting for around 81% of all wild species. As a result, the area is regarded as one of the main locations of origin for the Musaceae family. The understanding of the response of the banana genotypes of northeastern India belonging to different genome groups to water deficit stress at the molecular level will be useful for developing and improving drought tolerance in commercial banana cultivars not only in India but also worldwide. Hence, in the present review, we discuss the studies conducted to observe the effect of drought stress on different banana species. Moreover, the article highlights the tools and techniques that have been used or that can be used for exploring and understanding the molecular basis of differentially regulated genes and their networks in different drought stress-tolerant banana genotypes of northeast India, especially wild types, for unraveling their potential novel traits and genes.
Collapse
Affiliation(s)
| | | | - Punshi Singh Tongbram
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
| | - Vadthya Lokya
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Robert Thangjam
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
- Department of Life Sciences, School of Life Sciences, Manipur University, Imphal 795003, India
- Correspondence:
| |
Collapse
|
17
|
Goswami AK, Maurya NK, Goswami S, Bardhan K, Singh SK, Prakash J, Pradhan S, Kumar A, Chinnusamy V, Kumar P, Sharma RM, Sharma S, Bisht DS, Kumar C. Physio-biochemical and molecular stress regulators and their crosstalk for low-temperature stress responses in fruit crops: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:1022167. [PMID: 36578327 PMCID: PMC9790972 DOI: 10.3389/fpls.2022.1022167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Low-temperature stress (LTS) drastically affects vegetative and reproductive growth in fruit crops leading to a gross reduction in the yield and loss in product quality. Among the fruit crops, temperate fruits, during the period of evolution, have developed the mechanism of tolerance, i.e., adaptive capability to chilling and freezing when exposed to LTS. However, tropical and sub-tropical fruit crops are most vulnerable to LTS. As a result, fruit crops respond to LTS by inducing the expression of LTS related genes, which is for climatic acclimatization. The activation of the stress-responsive gene leads to changes in physiological and biochemical mechanisms such as photosynthesis, chlorophyll biosynthesis, respiration, membrane composition changes, alteration in protein synthesis, increased antioxidant activity, altered levels of metabolites, and signaling pathways that enhance their tolerance/resistance and alleviate the damage caused due to LTS and chilling injury. The gene induction mechanism has been investigated extensively in the model crop Arabidopsis and several winter kinds of cereal. The ICE1 (inducer of C-repeat binding factor expression 1) and the CBF (C-repeat binding factor) transcriptional cascade are involved in transcriptional control. The functions of various CBFs and aquaporin genes were well studied in crop plants and their role in multiple stresses including cold stresses is deciphered. In addition, tissue nutrients and plant growth regulators like ABA, ethylene, jasmonic acid etc., also play a significant role in alleviating the LTS and chilling injury in fruit crops. However, these physiological, biochemical and molecular understanding of LTS tolerance/resistance are restricted to few of the temperate and tropical fruit crops. Therefore, a better understanding of cold tolerance's underlying physio-biochemical and molecular components in fruit crops is required under open and simulated LTS. The understanding of LTS tolerance/resistance mechanism will lay the foundation for tailoring the novel fruit genotypes for successful crop production under erratic weather conditions.
Collapse
Affiliation(s)
- Amit Kumar Goswami
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Naveen Kumar Maurya
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Navsari, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jai Prakash
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Satyabrata Pradhan
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amarjeet Kumar
- Multi Testing Technology Centre and Vocational Training Centre, Selesih, Central Agricultural University, Imphal, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prabhat Kumar
- Department of Agriculture and Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Govt. of India, Krishi Bhavan, New Delhi, India
| | - Radha Mohan Sharma
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Stuti Sharma
- Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, India
| | | | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
18
|
Liu W, Liang X, Cai W, Wang H, Liu X, Cheng L, Song P, Luo G, Han D. Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:13418. [PMID: 36362205 PMCID: PMC9658438 DOI: 10.3390/ijms232113418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/06/2023] Open
Abstract
The grape (Vitis vinifera L.) not only has a long history of cultivation, but also has rich nutritional value and high economic value. However, grapes often face many threats in the growth process. For example, low temperature and salt stress restrict the growth status, yield, and geographical distribution of grapes. WRKY, as one of the largest transcription factor (TF) families in plants, participates in the response of plants to stress. VvWRKY28, a new zinc finger type transcriptional regulator gene, was isolated from Beichun (V. vinifera × V.amurensis) in this study. From the subcellular localization results, it can be concluded that VvWRKY28 was localized in the nucleus. The expression of VvWRKY28 was enriched in leaves (young and mature leaves), and cold and high salt conditions can induce high expression of VvWRKY28. After being transferred into Arabidopsis, VvWRKY28 greatly improved the tolerance of Arabidopsis to low temperature and high salt and also changed many physiological and biochemical indicators of transgenic Arabidopsis to cope with cold and high salt stimulation. The content of malondialdehyde (MDA) was decreased, but for chlorophyll and proline, their content increased, and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were improved. In addition, under cold stress, binding with cis-acting elements promotes the expression of downstream genes related to cold stress (RAB18, COR15A, ERD10, PIF4, COR47, and ICS1). Moreover, it also plays an active role in regulating the expression of genes related to salt stress (NCED3, SnRK2.4, CAT2, SOD1, SOS2, and P5CS1) under salt stress. Therefore, these results provide evidence that VvWRKY28 may play a role in the process of plant cold and salt stress tolerance.
Collapse
Affiliation(s)
- Wei Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xiaoqi Liang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Weijia Cai
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Hao Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xu Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Longfei Cheng
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Penghui Song
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Deguo Han
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Zhang LD, Song LY, Dai MJ, Guo ZJ, Wei MY, Li J, Xu CQ, Zhu XY, Zheng HL. Cadmium promotes the absorption of ammonium in hyperaccumulator Solanum nigrum L. mediated by ammonium transporters and aquaporins. CHEMOSPHERE 2022; 307:136031. [PMID: 35981624 DOI: 10.1016/j.chemosphere.2022.136031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal affecting the normal growth of plants. Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) absorbed by plants. However, the mechanism of N absorption and regulation under Cd stress remains unclear. This study found that: (1) Cd treatment affected the biomass, root length, and Cd2+ flux in Solanum nigrum seedling roots. Specifically, 50 μM Cd significantly inhibited NO3- influx while increased NH4+ influx compared with 0 and 5 μM Cd treatments measured by non-invasive micro-test technology. (2) qRT-PCR analysis showed that 50 μM Cd inhibited the expressions of nitrate transporter genes, SnNRT2;4 and SnNRT2;4-like, increased the expressions of ammonium transporter genes, SnAMT1;2 and SnAMT1;3, in the roots. (3) Under NH4+ supply, 50 μM Cd significantly induced the expressions of the aquaporin genes, SnPIP1;5, SnPIP2;7, and SnTIP2;1. Our results showed that 50 μM Cd stress promoted NH4+ absorption by up-regulating the gene expressions of NH4+ transporter and aquaporins, suggesting that high Cd stress can affect the preference of N nutrition in S. nigrum.
Collapse
Affiliation(s)
- Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ming-Jin Dai
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
20
|
Wang J, Yang L, Chai S, Ren Y, Guan M, Ma F, Liu J. An aquaporin gene MdPIP1;2 from Malus domestica confers salt tolerance in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153711. [PMID: 35550521 DOI: 10.1016/j.jplph.2022.153711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Aquaporins are known as water channel proteins. In this study, an aquaporin gene MdPIP1;2 was cloned from Malus domestica cv. Qinguan encoding a protein of 289 amino acids that formed the typical structure of aquaporin by six transmembrane domains, two asparagine-proline-alanine motifs, aromatic/arginine filter, and Forger's position. MdPIP1;2 was highly expressed in the water-sensitive or water-requiring tissues, and upregulated by salt and PEG stresses. MdPIP1;2 transgenic Arabidopsis exhibited enhanced salt stress tolerance with less Na + accumulation, lower malondialdehyde (MDA) content, lower electrolyte leakage (EL) level, and higher superoxide dismutase (SOD) and peroxidase (POD) activities compared with WT plants. Additionally, transcriptome analysis indicated MdPIP1;2 transgenic Arabidopsis could present healthier growth and development condition probably through regulating morphological structures and accumulating specific secondary metabolites under salt stress. Our results are a useful reference for better understanding the biological function of aquaporin in apple tree, especially in plant response to abiotic stress.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Leilei Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shuangshuang Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yafei Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Guan
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jingying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
21
|
Song S, Zhang D, Ma F, Xing W, Huang D, Wu B, Chen J, Chen D, Xu B, Xu Y. Genome-Wide Identification and Expression Analyses of the Aquaporin Gene Family in Passion Fruit ( Passiflora edulis), Revealing PeTIP3-2 to Be Involved in Drought Stress. Int J Mol Sci 2022; 23:5720. [PMID: 35628541 PMCID: PMC9146829 DOI: 10.3390/ijms23105720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaporins (AQPs) in plants can transport water and small molecules, and they play an important role in plant development and abiotic stress response. However, to date, a comprehensive study on AQP family members is lacking. In this study, 27 AQP genes were identified from the passion fruit genome and classified into four groups (NIP, PIP, TIP, SIP) on the basis of their phylogenetic relationships. The prediction of protein interactions indicated that the AQPs of passion fruit were mainly associated with AQP family members and boron protein family genes. Promoter cis-acting elements showed that most PeAQPs contain light response elements, hormone response elements, and abiotic stress response elements. According to collinear analysis, passion fruit is more closely related to Arabidopsis than rice. Furthermore, three different fruit ripening stages and different tissues were analyzed on the basis of the transcriptome sequencing results for passion fruit AQPs under drought, high-salt, cold and high-temperature stress, and the results were confirmed by qRT-PCR. The results showed that the PeAQPs were able to respond to different abiotic stresses, and some members could be induced by and expressed in response to multiple abiotic stresses at the same time. Among the three different fruit ripening stages, 15 AQPs had the highest expression levels in the first stage. AQPs are expressed in all tissues of the passion fruit. One of the passion fruit aquaporin genes, PeTIP3-2, which was induced by drought stress, was selected and transformed into Arabidopsis. The survival rate of transgenic plants under drought stress treatment is higher than that of wild-type plants. The results indicated that PeTIP3-2 was able to improve the drought resistance of plants. Our discovery lays the foundation for the functional study of AQPs in passion fruit.
Collapse
Affiliation(s)
- Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| | - Dahui Zhang
- Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (J.C.)
| | - Funing Ma
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| | - Wenting Xing
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Bin Wu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Jian Chen
- Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (J.C.)
| | - Di Chen
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Binqiang Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| |
Collapse
|
22
|
Reddy PS, Dhaware MG, Sivasakthi K, Divya K, Nagaraju M, Sri Cindhuri K, Kavi Kishor PB, Bhatnagar-Mathur P, Vadez V, Sharma KK. Pearl Millet Aquaporin Gene PgPIP2;6 Improves Abiotic Stress Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:820996. [PMID: 35356115 PMCID: PMC8959815 DOI: 10.3389/fpls.2022.820996] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Pearl millet [Pennisetum glaucum (L) R. Br.] is an important cereal crop of the semiarid tropics, which can withstand prolonged drought and heat stress. Considering an active involvement of the aquaporin (AQP) genes in water transport and desiccation tolerance besides several basic functions, their potential role in abiotic stress tolerance was systematically characterized and functionally validated. A total of 34 AQP genes from P. glaucum were identified and categorized into four subfamilies, viz., plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin-26-like intrinsic proteins (NIPs), and small basic intrinsic proteins (SIPs). Sequence analysis revealed that PgAQPs have conserved characters of AQP genes with a closer relationship to sorghum. The PgAQPs were expressed differentially under high vapor pressure deficit (VPD) and progressive drought stresses where the PgPIP2;6 gene showed significant expression under high VPD and drought stress. Transgenic tobacco plants were developed by heterologous expression of the PgPIP2;6 gene and functionally characterized under different abiotic stresses to further unravel their role. Transgenic tobacco plants in the T2 generations displayed restricted transpiration and low root exudation rates in low- and high-VPD conditions. Under progressive drought stress, wild-type (WT) plants showed a quick or faster decline of soil moisture than transgenics. While under heat stress, PgPIP2;6 transgenics showed better adaptation to heat (40°C) with high canopy temperature depression (CTD) and low transpiration; under low-temperature stress, they displayed lower transpiration than their non-transgenic counterparts. Cumulatively, lower transpiration rate (Tr), low root exudation rate, declined transpiration, elevated CTD, and lower transpiration indicate that PgPIP2;6 plays a role under abiotic stress tolerance. Since the PgPIP2;6 transgenic plants exhibited better adaptation against major abiotic stresses such as drought, high VPD, heat, and cold stresses by virtue of enhanced transpiration efficiency, it has the potential to engineer abiotic stress tolerance for sustained growth and productivity of crops.
Collapse
Affiliation(s)
| | - Mahamaya G. Dhaware
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kaliamoorthy Sivasakthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kummari Divya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Marka Nagaraju
- Department of Biochemistry, ICMR – National Institute of Nutrition, Hyderabad, India
| | - Katamreddy Sri Cindhuri
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Polavarapu Bilhan Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kiran K. Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
23
|
Identification of Aquaporin Gene Family in Response to Natural Cold Stress in Ligustrum × vicaryi Rehd. FORESTS 2022. [DOI: 10.3390/f13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants are susceptible to a variety of abiotic stresses during the growing period, among which low temperature is one of the more frequent stress factors. Maintaining water balance under cold stress is a difficult and critical challenge for plants. Studies have shown that aquaporins located on the cytomembrane play an important role in controlling water homeostasis under cold stress, and are involved in the tolerance mechanism of plant cells to cold stress. In addition, the aquaporin gene family is closely related to the cold resistance of plants. As a major greening tree species in urban landscaping, Ligustrum× vicaryi Rehd. is more likely to be harmed by low temperature after a harsh winter and a spring with fluctuating temperatures. Screening the target aquaporin genes of Ligustrum × vicaryi responding to cold resistance under natural cold stress will provide a scientific theoretical basis for cold resistance breeding of Ligustrum × vicaryi. In this study, the genome-wide identification of the aquaporin gene family was performed at four different overwintering periods in September, November, January and April, and finally, 58 candidate Ligustrum × vicaryi aquaporin (LvAQP) genes were identified. The phylogenetic analysis revealed four subfamilies of the LvAQP gene family: 32 PIPs, 11 TIPs, 11 NIPs and 4 SIPs. The number of genes in PIPs subfamily was more than that in other plants. Through the analysis of aquaporin genes related to cold stress in other plants and LvAQP gene expression patterns identified 20 LvAQP genes in response to cold stress, and most of them belonged to the PIPs subfamily. The significantly upregulated LvAQP gene was Cluster-9981.114831, and the significantly downregulated LvAQP genes were Cluster-9981.112839, Cluster-9981.107281, and Cluster-9981.112777. These genes might play a key role in responding to cold tolerance in the natural low-temperature growth stage of Ligustrum × vicaryi.
Collapse
|
24
|
New Insights into the Roles of Osmanthus Fragrans Heat-Shock Transcription Factors in Cold and Other Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sweet osmanthus (Osmanthus fragrans) is an evergreen woody plant that emits a floral aroma and is widely used in the landscape and fragrance industries. However, its application and cultivation regions are limited by cold stress. Heat-shock transcription factor (HSF) family members are widely present in plants and participate in, and regulate, the defense processes of plants under various abiotic stress conditions, but now, the role of this family in the responses of O. fragrans to cold stress is still not clear. Here, 46 OfHSF members were identified in the O. fragrans genome and divided into three subfamilies on the basis of a phylogenetic analysis. The promoter regions of most OfHSFs contained many cis-acting elements involved in multiple hormonal and abiotic stresses. RNA-seq data revealed that most of OfHSF genes were differentially expressed in various tissues, and some OfHSF members were induced by cold stress. The qRT-PCR analysis identified four OfHSFs that were induced by both cold and heat stresses, in which OfHSF11 and OfHSF43 had contrary expression trends under cold stress conditions and their expression patterns both showed recovery tendencies after the cold stress. OfHSF11 and OfHSF43 localized to the nuclei and their expression patterns were also induced under multiple abiotic stresses and hormonal treatments, indicating that they play critical roles in responses to multiple stresses. Furthermore, after a cold treatment, transient expression revealed that the malondialdehyde (MDA) content of OfHSF11-transformed tobacco significantly increased, and the expression levels of cold-response regulatory gene NbDREB3, cold response gene NbLEA5 and ROS detoxification gene NbCAT were significantly inhibited, implying that OfHSF11 is a negative regulator of cold responses in O. fragrans. Our study contributes to the further functional characterization of OfHSFs and will be useful in developing improved cold-tolerant cultivars of O. fragrans.
Collapse
|
25
|
Li F, Ni H, Yan W, Xie Y, Liu X, Tan X, Zhang L, Zhang SH. Overexpression of an aquaporin protein from Aspergillus glaucus confers salt tolerance in transgenic soybean. Transgenic Res 2021; 30:727-737. [PMID: 34460070 DOI: 10.1007/s11248-021-00280-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Salt stress is an important abiotic factor that causes severe losses in soybean yield and quality. Therefore, breeding salt-tolerant soybean germplasm resources via genetic engineering has gained importance. Aspergillus glaucus, a halophilic fungus that exhibits significant tolerance to salt, carries the gene AgGlpF. In this study, we used the soybean cotyledonary node transformation method to transfer the AgGlpF gene into the genome of the soybean variety Williams 82 to generate salt-tolerant transgenic soybean varieties. The results of PCR, Southern blot, ddPCR, and RT-PCR indicated that AgGlpF was successfully integrated into the soybean genome and stably expressed. When subjected to salt stress conditions via treatment with 250 mM NaCl for 3 d, the transgenic soybean plants showed significant tolerance compared with wild-type plants, which exhibited withering symptoms and leaf abscission after 9 d. The results of this study indicated that the transfer of AgGlpF into the genome of soybean plants produced transgenic soybean with significantly improved salt stress tolerance.
Collapse
Affiliation(s)
- Feiwu Li
- College of Plant Science, Jilin University, No. 5333, Xi'an Str., Lvyuan District, Changchun, 130062, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China
| | - Hejia Ni
- College of Agriculture, Northeast Agricultural University, Harbin, 150036, People's Republic of China
| | - Wei Yan
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China
| | - Yanbo Xie
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China
| | - Xiaodan Liu
- Institute of Bioengineering, Jilin Agriculture Science and Technology College, Jilin, 132101, Jilin, People's Republic of China
| | - Xichang Tan
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China
| | - Ling Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, No. 1363, Shengtai Str., Jingyue District, Changchun, 130033, Jilin, People's Republic of China.
| | - Shi-Hong Zhang
- College of Plant Science, Jilin University, No. 5333, Xi'an Str., Lvyuan District, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
26
|
Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int J Mol Sci 2021; 22:ijms222312619. [PMID: 34884426 PMCID: PMC8657568 DOI: 10.3390/ijms222312619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins, also known as Group II late embryogenesis abundant (LEA) proteins, are classic intrinsically disordered proteins, which have high hydrophilicity. A wide range of hostile environmental conditions including low temperature, drought, and high salinity stimulate dehydrin expression. Numerous studies have furnished evidence for the protective role played by dehydrins in plants exposed to abiotic stress. Furthermore, dehydrins play important roles in seed maturation and plant stress tolerance. Hence, dehydrins might also protect plasma membranes and proteins and stabilize DNA conformations. In the present review, we discuss the regulatory networks of dehydrin gene expression including the abscisic acid (ABA), mitogen-activated protein (MAP) kinase cascade, and Ca2+ signaling pathways. Crosstalk among these molecules and pathways may form a complex, diverse regulatory network, which may be implicated in regulating the same dehydrin.
Collapse
|
27
|
Liu J, Liu M, Wang J, Zhang J, Miao H, Wang Z, Jia C, Zhang J, Xu B, Jin Z. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7078-7091. [PMID: 34282447 DOI: 10.1093/jxb/erab341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Bananas are model fruits for studying starch conversion and climactericity. Starch degradation and ripening are two important biological processes that occur concomitantly in banana fruit. Ethylene biosynthesis and postharvest fruit ripening processes, i.e. starch degradation, fruit softening, and sugar accumulation, are highly correlated and thus could be controlled by a common regulatory switch. However, this switch has not been identified. In this study, we transformed red banana (Musa acuminata L.) with sense and anti-sense constructs of the MaMADS36 transcription factor gene (also MuMADS1, Ma05_g18560.1). Analysis of these lines showed that MaMADS36 interacts with 74 other proteins to form a co-expression network and could act as an important switch to regulate ethylene biosynthesis, starch degradation, softening, and sugar accumulation. Among these target genes, musa acuminata beta-amylase 9b (MaBAM9b, Ma05_t07800.1), which encodes a starch degradation enzyme, was selected to further investigate the regulatory mechanism of MaMADS36. Our findings revealed that MaMADS36 directly binds to the CA/T(r)G box of the MaBAM9b promoter to increase MaBAM9b transcription and, in turn, enzyme activity and starch degradation during ripening. These results will further our understanding of the fine regulatory mechanisms of MADS-box transcription factors in regulating fruit ripening, which can be applied to breeding programs to improve fruit shelf-life.
Collapse
Affiliation(s)
- Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Mengting Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jing Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
28
|
Xu Y, Liu J, Jia C, Hu W, Song S, Xu B, Jin Z. Overexpression of a Banana Aquaporin Gene MaPIP1;1 Enhances Tolerance to Multiple Abiotic Stresses in Transgenic Banana and Analysis of Its Interacting Transcription Factors. FRONTIERS IN PLANT SCIENCE 2021; 12:699230. [PMID: 34512687 PMCID: PMC8424054 DOI: 10.3389/fpls.2021.699230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/21/2021] [Indexed: 05/31/2023]
Abstract
Aquaporins can improve the ability of plants to resist abiotic stresses, but the mechanism is still not completely clear. In this research, overexpression of MaPIP1;1 in banana improved tolerance to multiple stresses. The transgenic plants resulted in lower ion leakage and malondialdehyde content, while the proline, chlorophyll, soluble sugar, and abscisic acid (ABA) contents were higher. In addition, under high salt and recovery conditions, the content of Na+ and K+ is higher, also under recovery conditions, the ratio of K+/Na+ is higher. Finally, under stress conditions, the expression levels of ABA biosynthesis and response genes in the transgenic lines are higher than those of the wild type. In previous studies, we proved that the MaMADS3 could bind to the promoter region of MaPIP1;1, thereby regulating the expression of MaPIP1;1 and affecting the drought tolerance of banana plants. However, the mechanism of MaPIP1;1 gene response to stress under different adversity conditions might be regulated differently. In this study, we proved that some transcription factor genes, including MaERF14, MaDREB1G, MaMYB1R1, MaERF1/39, MabZIP53, and MaMYB22, showed similar expression patterns with MaPIP1;1 under salt or cold stresses, and their encoded proteins could bind to the promoter region of MaPIP1;1. Here we proposed a novel MaPIP1;1-mediated mechanism that enhanced salt and cold tolerance in bananas. The results of this study have enriched the stress-resistant regulatory network of aquaporins genes and are of great significance for the development of molecular breeding strategies for stress-resistant fruit crops.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
29
|
Barzana G, Rios JJ, Lopez-Zaplana A, Nicolas-Espinosa J, Yepes-Molina L, Garcia-Ibañez P, Carvajal M. Interrelations of nutrient and water transporters in plants under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 171:595-619. [PMID: 32909634 DOI: 10.1111/ppl.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/12/2023]
Abstract
Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.
Collapse
Affiliation(s)
- Gloria Barzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan J Rios
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Alvaro Lopez-Zaplana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| |
Collapse
|
30
|
Đurić MJ, Subotić AR, Prokić LT, Trifunović-Momčilov MM, Cingel AD, Dragićević MB, Simonović AD, Milošević SM. Molecular Characterization and Expression of Four Aquaporin Genes in Impatiens walleriana During Drought Stress and Recovery. PLANTS (BASEL, SWITZERLAND) 2021; 10:154. [PMID: 33466920 PMCID: PMC7829780 DOI: 10.3390/plants10010154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Aquaporins comprise a large group of transmembrane proteins responsible for water transport, which is crucial for plant survival under stress conditions. Despite the vital role of aquaporins, nothing is known about this protein family in Impatiens walleriana, a commercially important horticultural plant, which is sensitive to drought stress. In the present study, attention is given to the molecular characterization of aquaporins in I. walleriana and their expression during drought stress and recovery. We identified four I. walleriana aquaporins: IwPIP1;4, IwPIP2;2, IwPIP2;7 and IwTIP4;1. All of them had conserved NPA motifs (Asparagine-Proline-Alanine), transmembrane helices (TMh), pore characteristics, stereochemical properties and tetrameric structure of holoprotein. Drought stress and recovery treatment affected the aquaporins expression in I. walleriana leaves, which was up- or downregulated depending on stress intensity. Expression of IwPIP2;7 was the most affected of all analyzed I. walleriana aquaporins. At 15% and 5% soil moisture and recovery from 15% and 5% soil moisture, IwPIP2;7 expression significantly decreased and increased, respectively. Aquaporins IwPIP1;4 and IwTIP4;1 had lower expression in comparison to IwPIP2;7, with moderate expression changes in response to drought and recovery, while IwPIP2;2 expression was of significance only in recovered plants. Insight into the molecular structure of I. walleriana aquaporins expanded knowledge about plant aquaporins, while its expression during drought and recovery contributed to I. walleriana drought tolerance mechanisms and re-acclimation.
Collapse
Affiliation(s)
- Marija J. Đurić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Angelina R. Subotić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Ljiljana T. Prokić
- Department for Agrochemistry and Plant Physiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Milana M. Trifunović-Momčilov
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Aleksandar D. Cingel
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Milan B. Dragićević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Ana D. Simonović
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| | - Snežana M. Milošević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Department of Plant Physiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (A.R.S.); (M.M.T.-M.); (A.D.C.); (M.B.D.); (A.D.S.); (S.M.M.)
| |
Collapse
|
31
|
Wang X, Yu R, Li J. Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and Ideal Plant Architecture. FRONTIERS IN PLANT SCIENCE 2021; 11:617528. [PMID: 33519876 PMCID: PMC7838362 DOI: 10.3389/fpls.2020.617528] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 05/28/2023]
Abstract
Bananas (Musa spp.) are an important fruit crop worldwide. The fungus Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt, is widely regarded as one of the most damaging plant diseases. Fusarium wilt has previously devastated global banana production and continues to do so today. In addition, due to the current use of high-density banana plantations, desirable banana varieties with ideal plant architecture (IPA) possess high lodging resistance, optimum photosynthesis, and efficient water absorption. These properties may help to increase banana production. Genetic engineering is useful for the development of banana varieties with Foc resistance and ideal plant architecture due to the sterility of most cultivars. However, the sustained immune response brought about by genetic engineering is always accompanied by yield reductions. To resolve this problem, we should perform functional genetic studies of the Musa genome, in conjunction with genome editing experiments, to unravel the molecular mechanisms underlying the immune response and the formation of plant architecture in the banana. Further explorations of the genes associated with Foc resistance and ideal architecture might lead to the development of banana varieties with both ideal architecture and pathogen super-resistance. Such varieties will help the banana to remain a staple food worldwide.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Renbo Yu
- Key Laboratory of Vegetable Research Center, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
32
|
Xu P, Guo Q, Meng S, Zhang X, Xu Z, Guo W, Shen X. Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum. BMC Genomics 2021; 22:26. [PMID: 33407102 PMCID: PMC7789578 DOI: 10.1186/s12864-020-07321-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cotton is more resistant to salt and drought stresses as compared to other field crops, which makes itself as a pioneer industrial crop in saline-alkali lands. However, abiotic stresses still negatively affect its growth and development significantly. It is therefore important to breed salt tolerance varieties which can help accelerate the improvement of cotton production. The development of molecular markers linked to causal genes has provided an effective and efficient approach for improving salt tolerance. Results In this study, a genome-wide association study (GWAS) of salt tolerance related traits at seedling stage was performed based on 2 years of phenotype identification for 217 representative upland cotton cultivars by genotyping-by-sequencing (GBS) platform. A total of 51,060 single nucleotide polymorphisms (SNPs) unevenly distributed among 26 chromosomes were screened across the cotton cultivars, and 25 associations with 27 SNPs scattered over 12 chromosomes were detected significantly (−log10p > 4) associated with three salt tolerance related traits in 2016 and 2017. Among these, the associations on chromosome A13 and D08 for relative plant height (RPH), A07 for relative shoot fresh matter weight (RSFW), A08 and A13 for relative shoot dry matter weight (RSDW) were expressed in both environments, indicating that they were likely to be stable quantitative trait loci (QTLs). A total of 12 salt-induced candidate genes were identified differentially expressed by the combination of GWAS and transcriptome analysis. Three promising genes were selected for preliminary function verification of salt tolerance. The increase of GH_A13G0171-silenced plants in salt related traits under salt stress indicated its negative function in regulating the salt stress response. Conclusions These results provided important genetic variations and candidate genes for accelerating the improvement of salt tolerance in cotton.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.,Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Qi Guo
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Shan Meng
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Xianggui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Zhenzhen Xu
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xinlian Shen
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China.
| |
Collapse
|
33
|
Xu P, Guo Q, Meng S, Zhang X, Xu Z, Guo W, Shen X. Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum. BMC Genomics 2021; 22:26. [PMID: 33407102 DOI: 10.21203/rs.3.rs-66236/v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Cotton is more resistant to salt and drought stresses as compared to other field crops, which makes itself as a pioneer industrial crop in saline-alkali lands. However, abiotic stresses still negatively affect its growth and development significantly. It is therefore important to breed salt tolerance varieties which can help accelerate the improvement of cotton production. The development of molecular markers linked to causal genes has provided an effective and efficient approach for improving salt tolerance. RESULTS In this study, a genome-wide association study (GWAS) of salt tolerance related traits at seedling stage was performed based on 2 years of phenotype identification for 217 representative upland cotton cultivars by genotyping-by-sequencing (GBS) platform. A total of 51,060 single nucleotide polymorphisms (SNPs) unevenly distributed among 26 chromosomes were screened across the cotton cultivars, and 25 associations with 27 SNPs scattered over 12 chromosomes were detected significantly (-log10p > 4) associated with three salt tolerance related traits in 2016 and 2017. Among these, the associations on chromosome A13 and D08 for relative plant height (RPH), A07 for relative shoot fresh matter weight (RSFW), A08 and A13 for relative shoot dry matter weight (RSDW) were expressed in both environments, indicating that they were likely to be stable quantitative trait loci (QTLs). A total of 12 salt-induced candidate genes were identified differentially expressed by the combination of GWAS and transcriptome analysis. Three promising genes were selected for preliminary function verification of salt tolerance. The increase of GH_A13G0171-silenced plants in salt related traits under salt stress indicated its negative function in regulating the salt stress response. CONCLUSIONS These results provided important genetic variations and candidate genes for accelerating the improvement of salt tolerance in cotton.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Qi Guo
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Shan Meng
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Xianggui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Zhenzhen Xu
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xinlian Shen
- Provincial Key Laboratory of Agrobiology, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China.
| |
Collapse
|
34
|
Yepes-Molina L, Bárzana G, Carvajal M. Controversial Regulation of Gene Expression and Protein Transduction of Aquaporins under Drought and Salinity Stress. PLANTS 2020; 9:plants9121662. [PMID: 33261103 PMCID: PMC7761296 DOI: 10.3390/plants9121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Enhancement of the passage of water through membranes is one of the main mechanisms via which cells can maintain their homeostasis under stress conditions, and aquaporins are the main participants in this process. However, in the last few years, a number of studies have reported discrepancies between aquaporin messenger RNA (mRNA) expression and the number of aquaporin proteins synthesised in response to abiotic stress. These observations suggest the existence of post-transcriptional mechanisms which regulate plasma membrane intrinsic protein (PIP) trafficking to the plasma membrane. This indicates that the mRNA synthesis of some aquaporins could be modulated by the accumulation of the corresponding encoded protein, in relation to the turnover of the membranes. This aspect is discussed in terms of the results obtained: on the one hand, with isolated vesicles, in which the level of proteins present provides the membranes with important characteristics such as resistance and stability and, on the other, with isolated proteins reconstituted in artificial liposomes as an in vitro method to address the in vivo physiology of the entire plant.
Collapse
|
35
|
Liu G, Li B, Li X, Wei Y, He C, Shi H. MaWRKY80 positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:155-166. [PMID: 32949935 DOI: 10.1016/j.plaphy.2020.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
WRKY transcription factors play key roles in plant biotic and abiotic stress responses, but the function of some MaWRKYs remains elusive. Here, we characterized the positive role of MaWRKY80 in drought stress resistance and the underlying mechanism. MaWRKY80 was significantly upregulated under drought stress and confirmed as a transcription factor that could bind to the W-box. Overexpression of MaWRKY80 in Arabidopsis showed better phenotypic morphology, higher survival rate, less water loss rate, and lower malondialdehyde level than wild type (WT) under drought stress. Consistently, MaWRKY80 transgenic Arabidopsis leaves displayed significantly lower reactive oxygen species (ROS) than WT under drought stress. Moreover, MaWRKY80 mediated the stomata movement and leaf water retention capacity through modulation of the transcript of 9-cis-epoxycarotenoid dioxygenases (NCEDs) and abscisic acid (ABA) biosynthesis in Arabidopsis. Notably, chromatin immunoprecipitation quantitative real-time PCR (ChIP-PCR) and electrophoretic mobility shift assay (EMSA) provided evidences supporting the direct and specific interaction between MaWRKY80 and both the W-box in AtNCEDs promoter in Arabidopsis and the W-box in MaNCEDs promoter in banana. Taken together, MaWRKY80 serves as a positive regulator of drought stress resistance through modulating ABA level by regulating NCEDs expression and ROS accumulation by regulating antioxidant system. This study provides a novel insight into MaWRKY80 in coordinating ABA synthesis and ROS elimination in response to drought stress.
Collapse
Affiliation(s)
- Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Bing Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Xiang Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China.
| |
Collapse
|
36
|
Xu Y, Jin Z, Xu B, Li J, Li Y, Wang X, Wang A, Hu W, Huang D, Wei Q, Xu Z, Song S. Identification of transcription factors interacting with a 1274 bp promoter of MaPIP1;1 which confers high-level gene expression and drought stress Inducibility in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:278. [PMID: 32546127 PMCID: PMC7298759 DOI: 10.1186/s12870-020-02472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/26/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought stress can severely affect plant growth and crop yield. The cloning and identification of drought-inducible promoters would be of value for genetically-based strategies to improve resistance of crops to drought. RESULTS Previous studies showed that the MaPIP1;1 gene encoding an aquaporin is involved in the plant drought stress response. In this study, the promoter pMaPIP1;1, which lies 1362 bp upstream of the MaPIP1;1 transcriptional initiation site, was isolated from the banana genome..And the transcription start site(A) is 47 bp before the ATG. To functionally validate the promoter, various lengths of pMaPIP1;1 were deleted and fused to GUS to generate pMaPIP1;1::GUS fusion constructs that were then transformed into Arabidopsis to generate four transformants termed M-P1, M-P2, M-P3 and M-P4.Mannitol treatment was used to simulate drought conditions. All four transformants reacted well to mannitol treatment. M-P2 (- 1274 bp to - 1) showed the highest transcriptional activity among all transgenic Arabidopsis tissues, indicating that M-P2 was the core region of pMaPIP1;1. This region of the promoter also confers high levels of gene expression in response to mannitol treatment. Using M-P2 as a yeast one-hybrid bait, 23 different transcription factors or genes that interacted with MaPIP1;1 were screened. In an dual luciferase assay for complementarity verification, the transcription factor MADS3 positively regulated MaPIP1;1 transcription when combined with the banana promoter. qRT-PCR showed that MADS3 expression was similar in banana leaves and roots under drought stress. In banana plants grown in 45% soil moisture to mimic drought stress, MaPIP1;1 expression was maximized, which further demonstrated that the MADS3 transcription factor can synergize with MaPIP1;1. CONCLUSIONS Together our results revealed that MaPIP1;1 mediates molecular mechanisms associated with drought responses in banana, and will expand our understanding of how AQP gene expression is regulated. The findings lay a foundation for genetic improvement of banana drought resistance.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anbang Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Wei
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuye Xu
- Hainan University, Haikou, China
| | - Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
37
|
Li Y, Li S, He X, Jiang W, Zhang D, Liu B, Li Q. CO 2 enrichment enhanced drought resistance by regulating growth, hydraulic conductivity and phytohormone contents in the root of cucumber seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:62-71. [PMID: 32388421 DOI: 10.1016/j.plaphy.2020.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 05/14/2023]
Abstract
The coordinated effects of CO2 enrichment and drought stress on cucumber leaves have attracted increasing research attention, but few studies have investigated the effects of CO2 enrichment on the root system under drought stress. So we analyzed the morphological parameters, hydraulic conductivity, aquaporin-related gene expression, and endogenous phytohormone contents in roots of cucumber seedlings cultured under different CO2 concentrations (approximately 400 and 800 ± 40 μmol mol-1) and drought stresses simulated by polyethylene glycol 6000 (0%, 5%, and 10%). The results showed that under drought stress, regardless of the CO2 concentration, the root biomass and hydraulic conductivity decreased, the contents of auxin (IAA), zeatin nucleoside (ZR), and gibberellin (GA) decreased, the abscisic acid (ABA) content and the transcript levels of the aquaporin-related genes CsPIP2-4 increased, and the transcript levels of the aquaporin-related genes CsPIP2-5 and CsPIP2-7 decreased compared with no drought stress. Under moderate drought stress, CO2 enrichment decreased ABA content and the transcript level of CsPIP2-4, increased root biomass and GA content and the transcript level of CsPIP2-7, improved contribution rate of cell-to-cell water transport (mediated by aquaporins) and roots hydraulic conductivity. In summary, drought stress changed the water transport capacity of the roots and inhibited the growth of cucumber seedlings. CO2 enrichment regulated phytohormone contents and aquaporin-related gene expression, maintained the normal contribution rate of cell-to-cell water transport, and improved the root biomass and hydraulic conductivity, thereby alleviated the negative effects of drought stress on cucumber seedlings.
Collapse
Affiliation(s)
- Yiman Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shuhao Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xinrui He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Weili Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dalong Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Binbin Liu
- State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China.
| | - Qingming Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China; School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
38
|
Ritonga FN, Chen S. Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E560. [PMID: 32353940 PMCID: PMC7284489 DOI: 10.3390/plants9050560] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023]
Abstract
Previous studies have reported that low temperature (LT) constrains plant growth and restricts productivity in temperate regions. However, the underlying mechanisms are complex and not well understood. Over the past ten years, research on the process of adaptation and tolerance of plants during cold stress has been carried out. In molecular terms, researchers prioritize research into the field of the ICE-CBF-COR signaling pathway which is believed to be the important key to the cold acclimation process. Inducer of CBF Expression (ICE) is a pioneer of cold acclimation and plays a central role in C-repeat binding (CBF) cold induction. CBFs activate the expression of COR genes via binding to cis-elements in the promoter of COR genes. An ICE-CBF-COR signaling pathway activates the appropriate expression of downstream genes, which encodes osmoregulation substances. In this review, we summarize the recent progress of cold stress tolerance in plants from molecular and physiological perspectives and other factors, such as hormones, light, and circadian clock. Understanding the process of cold stress tolerance and the genes involved in the signaling network for cold stress is essential for improving plants, especially crops.
Collapse
Affiliation(s)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|