1
|
Li J, Huang T, Xia M, Lu J, Xu X, Liu H, Zhang W. Exogenous melatonin mediates radish ( Raphanus sativus) and Alternaria brassicae interaction in a dose-dependent manner. FRONTIERS IN PLANT SCIENCE 2023; 14:1126669. [PMID: 36923135 PMCID: PMC10009256 DOI: 10.3389/fpls.2023.1126669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Radish (Raphanus sativus L.) is an economically important vegetable worldwide, but its sustainable production and breeding are highly threatened by blight disease caused by Alternaria brassicae. Melatonin is an important growth regulator that can influence physiological activities in both plants and microbes and stimulate biotic stress resistance in plants. In this study, 0-1500 μM melatonin was exogenously applied to healthy radish seedlings, in vitro incubated A. brassicae, and diseased radish seedlings to determine the effects of melatonin on host, pathogen, and host-pathogen interaction. At sufficient concentrations (0-500 μM), melatonin enhanced growth and immunity of healthy radish seedlings by improving the function of organelles and promoting the biosynthesis of antioxidant enzymes, chitin, organic acid, and defense proteins. Interestingly, melatonin also improved colony growth, development, and virulence of A. brassicae. A strong dosage-dependent effect of melatonin was observed: 50-500 μM promoted host and pathogen vitality and resistance (500 μM was optimal) and 1500 μM inhibited these processes. Significantly less blight was observed on diseased seedlings treated with 500 μM melatonin, indicating that melatonin more strongly enhanced the growth and immunity of radish than it promoted the development and virulence of A. brassicae at this treatment concentration. These effects of MT were mediated by transcriptional changes of key genes as identified by RNA-seq, Dual RNA-seq, and qRT-PCR. The results from this work provide a theoretical basis for the application of melatonin to protect vegetable crops against pathogens.
Collapse
Affiliation(s)
- Jingwei Li
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tingmin Huang
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ming Xia
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
- School of Computing, Chongqing College of Humanities, Science and Technology, Hechuan, China
| | - Jinbiao Lu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiuhong Xu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Haiyi Liu
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Wanping Zhang
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Neupane D, Lohaus RH, Solomon JKQ, Cushman JC. Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060772. [PMID: 35336654 PMCID: PMC8951600 DOI: 10.3390/plants11060772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 05/09/2023]
Abstract
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing “camelina” from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches.
Collapse
Affiliation(s)
- Dhurba Neupane
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Richard H. Lohaus
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Juan K. Q. Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA;
| | - John C. Cushman
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
- Correspondence: ; Tel.: +1-775-784-1918
| |
Collapse
|