1
|
Marant B, Flourat AL, Lanoue A, Magot F, Parent L, Leclère V, Guihard G, Aggad D, Jacquard C, Courot E, Aziz A, Crouzet J. Peroxidase 4-Based Enzymatic Synthesis of Stilbene Oligomers in Methyl Jasmonate-Elicited Grapevine Cell Suspensions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1929-1939. [PMID: 39787273 DOI: 10.1021/acs.jafc.4c09502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Stilbenes are specialized metabolites that are particularly abundant in Vitis species. Although the biosynthetic pathways of stilbenes have been well-characterized, the role of specific peroxidases in stilbene oligomerization remains to be investigated. In this study, we used grapevine cell cultures to characterize the functional role of Vitis vinifera peroxidase 4 (VvPRX4) in the production of resveratrol oligomers after elicitation with methyl jasmonate (MeJA). We showed that MeJA triggers the accumulation of t-resveratrol, resveratrol dimers, and predicted resveratrol trimers in culture medium. This accumulation was correlated with upregulation of the PRX4 gene in grapevine cells. Using bacterial crude extracts containing VvPRX4, we demonstrated that VvPRX4 converts t-resveratrol into dimers, t-ε-viniferin into tetramers, and both combined substrates into resveratrol trimers. Additionally, VvPRX4 mediates the formation of glycosylated dimers using t-piceid and t-resveratrol as substrates. These results highlight the functional role of VvPRX4 in stilbene oligomerization in MeJA-elicited grapevine cell cultures.
Collapse
Affiliation(s)
- Blandine Marant
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Amandine L Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France
| | - Arnaud Lanoue
- Université de Tours, EA 2106 ≪Biomolécules et Biotechnologie Végétales≫, UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200 Tours, France
| | - Florent Magot
- Université de Tours, EA 2106 ≪Biomolécules et Biotechnologie Végétales≫, UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200 Tours, France
| | - Laetitia Parent
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Vincent Leclère
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Gabriel Guihard
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Dina Aggad
- Université de Reims Champagne Ardenne, URCATech - MOBICYTE, 51100 Reims, France
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Eric Courot
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Aziz Aziz
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100 Reims, France
| |
Collapse
|
2
|
Billet K, Salvador-Blanes S, Dugé De Bernonville T, Delanoue G, Hinschberger F, Oudin A, Courdavault V, Pichon O, Besseau S, Leturcq S, Giglioli-Guivarc'h N, Lanoue A. Terroir Influence on Polyphenol Metabolism from Grape Canes: A Spatial Metabolomic Study at Parcel Scale. Molecules 2023; 28:molecules28114555. [PMID: 37299031 DOI: 10.3390/molecules28114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The composition of bioactive polyphenols from grape canes, an important viticultural byproduct, was shown to be varietal-dependent; however, the influence of soil-related terroir factors remains unexplored. Using spatial metabolomics and correlation-based networks, we investigated how continuous changes in soil features and topography may impact the polyphenol composition in grape canes. Soil properties, topography, and grape cane extracts were analyzed at georeferenced points over 3 consecutive years, followed by UPLC-DAD-MS-based metabolomic analysis targeting 42 metabolites. Principal component analyses on intra-vintage metabolomic data presented a good reproducibility in relation to geographic coordinates. A correlation-driven approach was used to explore the combined influence of soil and topographic variables on metabolomic responses. As a result, a metabolic cluster including flavonoids was correlated with elevation and curvature. Spatial metabolomics driven by correlation-based networks represents a powerful approach to spatialize field-omics data and may serve as new field-phenotyping tool in precision agriculture.
Collapse
Affiliation(s)
- Kévin Billet
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F-37200 Tours, France
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), F-35653 Le Rheu, France
| | | | - Thomas Dugé De Bernonville
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F-37200 Tours, France
- Limagrain, Centre de Recherche, Route d'Ennezat, F-63720 Chappes, France
| | | | - Florent Hinschberger
- GéoHydrosystèmes Continentaux (GéHCO), EA 6293, Université de Tours, F-37200 Tours, France
| | - Audrey Oudin
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F-37200 Tours, France
| | - Vincent Courdavault
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F-37200 Tours, France
| | - Olivier Pichon
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F-37200 Tours, France
| | - Sébastien Besseau
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F-37200 Tours, France
| | - Samuel Leturcq
- Laboratoire CITERES, Equipe Laboratoire Archéologie et Territoires (LAT), UMR 7324 CNRS, Université de Tours, F-37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F-37200 Tours, France
| | - Arnaud Lanoue
- EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F-37200 Tours, France
| |
Collapse
|
3
|
Dolui D, Hasanuzzaman M, Fujita M, Adak MK. 2,4-D mediated moderation of aluminum tolerance in Salvinia molesta D. Mitch. with regards to bioexclusion and related physiological and metabolic changes. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:27-44. [PMID: 37259532 DOI: 10.1080/15226514.2023.2216311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We examined the efficacy of 2,4-dichlorophenoxy acetic acid (2,4-D; 500 µM) in enhancing the potential of Salvinia species for tolerance to aluminum (Al) toxicity (240 and 480 µM, seven days). Salvinia showed better efficacy in removal of toxicity of Al by sorption mechanism with changes of bond energy shifting on cell wall residues and surface structure. Plants recorded tolerance to Al concentration (480 µM) when pretreated with 2,4-D through adjustment of relative water content, proline content, osmotic potential, and improved the pigment fluorescence for energy utilization under Al stress. Photosynthetic activities with regards to NADP-malic enzyme and malic dehydrogenase and sugar metabolism with wall and cytosolic invertase activities were strongly correlated with compatible solutes. A less membrane peroxidation and protein carbonylation had reduced ionic loss over the membrane that was studied with reduced electrolyte leakage with 2,4-D pretreated plants. Membrane stabilization was also recorded with higher ratio of K+ to Na+, thereby suggesting roles of 2,4-D in ionic balance. Better sustenance of enzymatic antioxidation with peroxidase and glutathione metabolism reduced reactive oxygen species accumulation and save the plant for oxidative damages. Moreover, gene polymorphism for antioxidant, induced by 2,4-D varied through Al concentrations would suggest an improved biomarker for tolerance. Collectively, analysis and discussion of plant's responses assumed that auxin herbicide could be a potential phytoprotectant for Salvinia as well as improving the stability to Al toxicity and its bioremediation efficacy.
Collapse
Affiliation(s)
- Debabrata Dolui
- Department of Botany, Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, University of Kalyani, Kalyani, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Takamatsu, Japan
| | - Malay Kumar Adak
- Department of Botany, Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, University of Kalyani, Kalyani, India
| |
Collapse
|
4
|
Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, Ullrich MS, Kuhnert N, Zeng H. Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi. J Fungi (Basel) 2022; 9:52. [PMID: 36675873 PMCID: PMC9865837 DOI: 10.3390/jof9010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fungi infections cause approximately 60-70% yield loss through diseases such as rice blast, powdery mildew, Fusarium rot, downy mildew, etc. Plants naturally respond to these infections by eliciting an array of protective metabolites to confer physical or chemical protection. Among plant metabolites, lignin, a phenolic compound, thickens the middle lamella and the secondary cell walls of plants to curtail fungi infection. The biosynthesis of monolignols (lignin monomers) is regulated by genes whose transcript abundance significantly improves plant defense against fungi. The catalytic activities of lignin biosynthetic enzymes also contribute to the accumulation of other defense compounds. Recent advances focus on modifying the lignin pathway to enhance plant growth and defense against pathogens. This review presents an overview of monolignol regulatory genes and their contributions to fungi immunity, as reported over the last five years. This review expands the frontiers in lignin pathway engineering to enhance plant defense.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianpei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zenchao Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tengfeng Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - James Ziemah
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Matthias S. Ullrich
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
5
|
Highly Efficient Bioconversion of trans-Resveratrol to δ-Viniferin Using Conditioned Medium of Grapevine Callus Suspension Cultures. Int J Mol Sci 2022; 23:ijms23084403. [PMID: 35457219 PMCID: PMC9026456 DOI: 10.3390/ijms23084403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
δ-Viniferin is a resveratrol dimer that possesses potent antioxidant properties and has attracted attention as an ingredient for cosmetic and nutraceutical products. Enzymatic bioconversion and plant callus and cell suspension cultures can be used to produce stilbenes such as resveratrol and viniferin. Here, δ-viniferin was produced by bioconversion from trans-resveratrol using conditioned medium (CM) of grapevine (Vitis labruscana) callus suspension cultures. The CM converted trans-resveratrol to δ-viniferin immediately after addition of hydrogen peroxide (H2O2). Peroxidase activity and bioconversion efficiency in CM increased with increasing culture time. Optimized δ-viniferin production conditions were determined regarding H2O2 concentration, incubation time, temperature, and pH. Maximum bioconversion efficiency reached 64% under the optimized conditions (pH 6.0, 60 °C, 30 min incubation time, 6.8 mM H2O2). In addition, in vitro bioconversion of trans-resveratrol was investigated using CM of different callus suspension cultures, showing that addition of trans-resveratrol and H2O2 to the CM led to production of δ-viniferin via extracellular peroxidase-mediated oxidative coupling of two molecules of trans-resveratrol. We thus propose a simple and low-cost method of δ-viniferin production from trans-resveratrol using CM of plant callus suspension cultures, which may constitute an alternative approach for in vitro bioconversion of valuable molecules.
Collapse
|
6
|
Leng F, Ye Y, Zhou J, Jia H, Zhu X, Shi J, Zhang Z, Shen N, Wang L. Transcriptomic and Weighted Gene Co-expression Correlation Network Analysis Reveal Resveratrol Biosynthesis Mechanisms Caused by Bud Sport in Grape Berry. FRONTIERS IN PLANT SCIENCE 2021; 12:690095. [PMID: 34220913 PMCID: PMC8253253 DOI: 10.3389/fpls.2021.690095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Resveratrol is a natural polyphenol compound produced in response to biotic and abiotic stresses in grape berries. However, changes in resveratrol caused by bud sport in grapes are scarcely reported. In this study, trans-resveratrol and cis-resveratrol were identified and quantified in the grape berries of 'Summer Black' and its bud sport 'Nantaihutezao' from the veraison to ripening stages using ultra performance liquid chromatography-high resolution tandem mass spectrometry (UPLC-HRMS). We found that bud sport accumulates the trans-resveratrol earlier and increases the contents of cis-resveratrol in the earlier stages but decreases its contents in the later stages. Simultaneously, we used RNA-Seq to identify 51 transcripts involved in the stilbene pathways. In particular, we further identified 124 and 19 transcripts that negatively correlated with the contents of trans-resveratrol and cis-resveratrol, respectively, and four transcripts encoding F3'5'H that positively correlated with the contents of trans-resveratrol by weighted gene co-expression network analysis (WGCNA). These transcripts may play important roles in relation to the synergistic regulation of metabolisms of resveratrol. The results of this study can provide a theoretical basis for the genetic improvement of grapes.
Collapse
Affiliation(s)
- Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yunling Ye
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jialing Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Huijuan Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement of the Ministry of Agriculture/Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaoheng Zhu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement of the Ministry of Agriculture/Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jiayu Shi
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ziyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|