1
|
Bohra A, Choudhary M, Bennett D, Joshi R, Mir RR, Varshney RK. Drought-tolerant wheat for enhancing global food security. Funct Integr Genomics 2024; 24:212. [PMID: 39535570 DOI: 10.1007/s10142-024-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Wheat is among the most produced grain crops of the world and alone provides a fifth of the world's calories and protein. Wheat has played a key role in food security since the crop served as a Neolithic founder crop for the establishment of world agriculture. Projections showing a decline in global wheat yields in changing climates imply that food security targets could be jeopardized. Increased frequency and intensity of drought occurrence is evident in major wheat-producing regions worldwide, and notably, the wheat-producing area under drought is projected to swell globally by 60% by the end of the 21st century. Wheat yields are significantly reduced due to changes in plant morphological, physiological, biochemical, and molecular activities in response to drought stress. Advances in wheat genetics, multi-omics technologies and plant phenotyping have enhanced the understanding of crop responses to drought conditions. Research has elucidated key genomic regions, candidate genes, signalling molecules and associated networks that orchestrate tolerance mechanisms under drought stress. Robust and low-cost selection tools are now available in wheat for screening genetic variations for drought tolerance traits. New breeding techniques and selection tools open a unique opportunity to tailor future wheat crop with optimal trait combinations that help withstand extreme drought. Adoption of the new wheat varieties will increase crop diversity in rain-fed agriculture and ensure sustainable improvements in crop yields to safeguard the world's food security in drier environments.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU campus, Ludhiana, 141001, India
| | - Dion Bennett
- Australian Grain technologies (AGT), Northam, WA, 6401, Australia
| | - Rohit Joshi
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Srinagar, 190025, Shalimar, India
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
2
|
de Almeida LW, Torregrosa L, Dournes G, Pellegrino A, Ojeda H, Roland A. New Fungus-Resistant Grapevine Vitis and V. vinifera L. × M. rotundifolia Derivative Hybrids Display a Drought-Independent Response in Thiol Precursor Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1855-1863. [PMID: 36943233 DOI: 10.1021/acs.jafc.2c08595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The use of new disease-resistant grapevine varieties is a long-term but promising solution to reduce chemical inputs in viticulture. However, little is known about water deficit effects on these varieties, notably regarding berry composition. The aim of this study was to characterize the primary metabolites and thiol precursors levels of 6 fungi-resistant varieties and Syrah. Vines were grown under field conditions and under different water supply levels, and harvested at the phloem unloading arrest. A great variability among varieties regarding the levels of thiol precursors was observed, with the highest concentration, of 539 μg/kg, being observed in 3176-N, a hybrid displaying red fruits. Water deficit negatively and equally impacted the accumulation of sugars, organic acids, and thiol precursors per berry and per plant, with minor effects on their concentration. The observed losses of metabolites per cultivation area suggest that water deficits can lead to significant economic losses for the producer.
Collapse
Affiliation(s)
- Luciana Wilhelm de Almeida
- Unité Expérimentale de Pech Rouge (UE 0999), INRAE, 11430 Gruissan, France
- UMR LEPSE, Université de Montpellier, INRAE, CIRAD, Institut Agro Montpellier, 2, place P. Viala, 34060 Montpellier Cedex, France
| | - Laurent Torregrosa
- Unité Expérimentale de Pech Rouge (UE 0999), INRAE, 11430 Gruissan, France
- UMR LEPSE, Université de Montpellier, INRAE, CIRAD, Institut Agro Montpellier, 2, place P. Viala, 34060 Montpellier Cedex, France
| | - Gabriel Dournes
- UMR SPO, INRAE, Institut Agro, University Montpellier, 34060 Montpellier, France
| | - Anne Pellegrino
- UMR LEPSE, Université de Montpellier, INRAE, CIRAD, Institut Agro Montpellier, 2, place P. Viala, 34060 Montpellier Cedex, France
| | - Hernán Ojeda
- Unité Expérimentale de Pech Rouge (UE 0999), INRAE, 11430 Gruissan, France
| | - Aurelie Roland
- UMR SPO, INRAE, Institut Agro, University Montpellier, 34060 Montpellier, France
| |
Collapse
|
3
|
Leaf Eco-Physiological Profile and Berries Technological Traits on Potted Vitis vinifera L. cv Pinot Noir Subordinated to Zeolite Treatments under Drought Stress. PLANTS 2022; 11:plants11131735. [PMID: 35807687 PMCID: PMC9268851 DOI: 10.3390/plants11131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
In Mediterranean areas, extreme weather conditions such as high diurnal temperatures during the growing season could tweak vine physiology and metabolism, affecting grapes’ quality. Moreover, uncertainty in spatial and temporal distribution precipitation is an issue for the water resources of the vineyards, forcing the winemakers to continuously face an increasing water demand in recent decades, which has led them to non-sustainable choices for ambient (i.e., irrigation solutions). The aspiration of this experiment was to explore the effects of zeolite treatments (clinoptilolite type) on Vitis vinifera L. (potted vines) ecophysiology and berry metabolism under two water regimes. The plants were subordinated to two different predawn water potential regimes (0 ≤ ΨPD ≤ −0.4, WWCtrl and −0.4 ≤ ΨPD ≤ −0.9, WSCtrl), both associated with zeolite treatments (WWt and WSt). Gas exchanges, predawn and midday stem water potential, chlorophyll fluorescence, temperature, and relative water content were overseen on leaves at veraison, maturation, and harvest. Technological analyses were performed on the berries. Moreover, data were analyzed with principal component analysis and Pearson’s correlations. This experiment supplies new evidence that zeolite applications could impact both physiological profiles (higher photosynthesis and stomatal conductance) as well as berry skin metabolism (sugar and size) of vines, giving a better skill to counteract low water availability during the season and maintaining a better hydraulic conductivity.
Collapse
|
4
|
Assessing the Impact of Extreme Droughts on Dryland Vegetation by Multi-Satellite Solar-Induced Chlorophyll Fluorescence. REMOTE SENSING 2022. [DOI: 10.3390/rs14071581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Satellite-estimated solar-induced chlorophyll fluorescence (SIF) is proven to be an effective indicator for dynamic drought monitoring, while the capability of SIF to assess the variability of dryland vegetation under water and heat stress remains challenging. This study presents an analysis of the responses of dryland vegetation to the worst extreme drought over the past two decades in Australia, using multi-source spaceborne SIF derived from the Global Ozone Monitoring Experiment-2 (GOME-2) and TROPOspheric Monitoring Instrument (TROPOMI). Vegetation functioning was substantially constrained by this extreme event, especially in the interior of Australia, in which there was hardly seasonal growth detected by neither satellite-based observations nor tower-based flux measurements. At a 16-day interval, both SIF and enhanced vegetation index (EVI) can timely capture the reduction at the onset of drought over dryland ecosystems. The results demonstrate that satellite-observed SIF has the potential for characterizing and monitoring the spatiotemporal dynamics of drought over water-limited ecosystems, despite coarse spatial resolution coupled with high-retrieval noise as compared with EVI. Furthermore, our study highlights that SIF retrieved from TROPOMI featuring substantially enhanced spatiotemporal resolution has the promising capability for accurately tracking the drought-induced variation of heterogeneous dryland vegetation.
Collapse
|
5
|
Climate Change Impact on Wheat Performance—Effects on Vigour, Plant Traits and Yield from Early and Late Drought Stress in Diverse Lines. Int J Mol Sci 2022; 23:ijms23063333. [PMID: 35328754 PMCID: PMC8950129 DOI: 10.3390/ijms23063333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Global climate change is threatening wheat productivity; improved yield under drought conditions is urgent. Here, diverse spring-wheat lines (modern, old and wheat-rye introgressions) were examined in an image-based early-vigour assay and a controlled-conditions (Biotron) trial that evaluated 13 traits until maturity. Early root vigour was significantly higher in the old Swedish lines (root length 8.50 cm) and introgressed lines with 1R (11.78 cm) and 1RS (9.91 cm) than in the modern (4.20 cm) and 2R (4.67 cm) lines. No significant correlation was noted between early root and shoot vigour. A higher yield was obtained under early drought stress in the 3R genotypes than in the other genotype groups, while no clear patterns were noted under late drought. Evaluating the top 10% of genotypes in terms of the stress-tolerance index for yield showed that root biomass, grains and spikes per plant were accountable for tolerance to early drought, while 1000-grain weight and flag-leaf area were accountable for tolerance to late drought. Early root vigour was determined as an important focus trait of wheat breeding for tolerance to climate-change-induced drought. The responsible genes for the trait should be searched for in these diverse lines. Additional drought-tolerance traits determined here need further elaboration to identify the responsible genes.
Collapse
|
6
|
Comparing Methods for the Analysis of δ13C in Falanghina Grape Must from Different Pedoclimatic Conditions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Agroforestry applications in viticulture are considered a promising strategy to improve vine water status by mitigating the threats of increasing drought due to climate change. The analysis of δ¹³C is often used in viticulture to understand vine water use. In this study, the analysis of δ¹³C was performed on the must of Falanghina grapevines growing in different pedoclimatic conditions. The aim was to compare the results obtained by the application of two different methodologies, using the whole must or extracted sugars as the matrix. The results showed that the δ¹³C values obtained by applying the two methodologies were comparable in all analyzed vineyards independently from the pedoclimatic conditions. Indeed, the proposed method of extraction of the δ¹³C on the must as a whole can be both cost- and time-saving for the analysis. This is valuable, considering that the δ¹³C of must is becoming more and more used as indicator of vines’ water use. Therefore, the possibility to utilize a simplified method of extraction would enhance the application of the δ¹³C at a larger scale to evaluate vine adaptation in the context of climate-change-driven increases in drought.
Collapse
|
7
|
Cataldo E, Salvi L, Sbraci S, Manzi D, Masciandaro G, Masini CM, Mattii GB. Zeowine: The synergy of zeolite and compost. Effects on the physiology of the vine and on the quality of the grapes. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224402002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain. At present, the use of zeolites in agriculture is a fast-spreading practice; their application to soils (both as natural zeolites and in combination with organic and mineral fertilizers) not only increases production but also leads to the exaltation of quality indices. The research was conducted in the 2019 season in San Miniato (Tuscany) on the vineyard of Sangiovese in production, performing the following inter-row treatments at the beginning of January: commercial organic fertilizer, zeolite (clinopthylolite) and zeowine (combination zeolite and compost obtained through grape processing waste) in the respective doses of 20 t/ha, 10 t/ha and 30 t/ha. Following the treatment, we measured gas exchanges and water potential, berry weight, °Brix, pH, acidity, total and extractable anthocyanins and polyphenols. Treatments with Zeowine and zeolites reduced water stress. In Zeowine treatment, soluble solids were lower, while acidity, pH and berry weight do not vary from control. Statistical differences are also noted in the concentrations of anthocyanins and polyphenols. Results suggest a positive impact of Zeowine treatment on physiology and quality characteristics in V. vinifera.
Collapse
|
8
|
Effects of Defoliation at Fruit Set on Vine Physiology and Berry Composition in Cabernet Sauvignon Grapevines. PLANTS 2021; 10:plants10061183. [PMID: 34200683 PMCID: PMC8229002 DOI: 10.3390/plants10061183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/05/2023]
Abstract
Grapevine canopy defoliation is a fundamentally important technique for the productivity and quality of grapes. Leaf removal is a pivotal operation on high-density vines which aims to improve air circulation, light exposure, and leaf gas exchange. The effects of leaf removal (LR) on vine physiology and berry composition in Cabernet Sauvignon grapevines were studied during the 2018–2019 growing season in the Bolgheri area, Tuscany, Italy. The basal leaves were removed at fruit set at two severity levels (removal of four basal leaves of each shoot (LR4) and removal of eight basal leaves (LR8)). The two treatments were compared with the not defoliated control (CTRL). The following physiological parameters of vines were measured: leaf gas exchange, leaf water potential, chlorophyll fluorescence and indirect chlorophyll content. The results showed that defoliation increased single leaf photosynthesis. In addition, qualitative grape parameters (phenolic and technological analyses) and daytime and night-time berry temperature were studied. The results showed that leaf removal had an impact on total soluble solids (°Brix), titratable acidity, and pH. The LR8-treated grapes had higher titratable acidity, while those in the LR4 treatment had higher °Brix and extractable anthocyanin and polyphenol content. Berry weight was not significantly influenced by the timing and severity of basal defoliation. Therefore, this research aims to investigate the effects of defoliation at the fruit set on vines performance.
Collapse
|