1
|
Yang D, Jia L, Zhou Y, Lu J, He Y, Jiao J, Huang J, Xia R, Li Y, Han L, Peng Z. Geographical origin traceability of mulberry leaves using stable hydrogen, oxygen, and carbon isotope ratios. ANAL SCI 2023; 39:2075-2083. [PMID: 37665546 DOI: 10.1007/s44211-023-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Geographical discrimination of mulberry leaves is very important for their efficacy and quality as a traditional Chinese medicine. Stable hydrogen, oxygen, and carbon isotope ratios were measured in 292 mulberry leaves collected at 2 growth stages in 2 seasons from 8 regions of China. A stepwise linear discriminant analysis (LDA) approach were proposed to combine with stable isotope technology to tracing the origin of mulberry leaves. The results showed that leaves sampled in autumn were extremely depleted in 2H and 18O and slightly enriched in 13C compared with leaves sampled in summer, correlated with the effect of season, transpiration and photorespiration on stable isotopes. δ2H and δ18O of the leaves were enriched during the growth process. The overall discrimination accuracy of the autumn tender model was 81%, demonstrating that analysis of δ2H, δ18O, and δ13C is a promising technique for tracing the geographical origin of mulberry leaves, although season, growth stage and number of samples affect the accuracy of discrimination.
Collapse
Affiliation(s)
- Dan Yang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Liling Jia
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou, 310002, China
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou, 310002, China
| | - Jingzhong Lu
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yujie He
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinpeng Jiao
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ju Huang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Runtao Xia
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuxing Li
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lihua Han
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhiqin Peng
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Understanding the Relationship between Water Availability and Biosilica Accumulation in Selected C4 Crop Leaves: An Experimental Approach. PLANTS 2022; 11:plants11081019. [PMID: 35448747 PMCID: PMC9031050 DOI: 10.3390/plants11081019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Biosilica accumulation in plant tissues is related to the transpiration stream, which in turn depends on water availability. Nevertheless, the debate on whether genetically and environmentally controlled mechanisms of biosilica deposition are directly connected to water availability is still open. We aim at clarifying the system which leads to the deposition of biosilica in Sorghum bicolor, Pennisetum glaucum, and Eleusine coracana, expanding our understanding of the physiological role of silicon in crops well-adapted to arid environments, and simultaneously advancing the research in archaeological and paleoenvironmental studies. We cultivated ten traditional landraces for each crop in lysimeters, simulating irrigated and rain-fed scenarios in arid contexts. The percentage of biosilica accumulated in leaves indicates that both well-watered millet species deposited more biosilica than the water-stressed ones. By contrast, sorghum accumulated more biosilica with respect to the other two species, and biosilica accumulation was independent of the water regime. The water treatment alone did not explain either the variability of the assemblage or the differences in the biosilica accumulation. Hence, we hypothesize that genetics influence the variability substantially. These results demonstrate that biosilica accumulation differs among and within C4 species and that water availability is not the only driver in this process.
Collapse
|