1
|
Jiang D, Xu L, Wen W. A novel transcription factor CsSNACA2 plays a pivotal role within nitrogen assimilation in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17198. [PMID: 39661731 DOI: 10.1111/tpj.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Tea (Camellia sinensis) is a globally renowned economic crop, with organs such as leaves and buds utilized for consumption. As a perennial foliage crop, tea plants have high-nitrogen consumption and demand but exhibit relatively low nitrogen use efficiency. Exploring the genetic factors involved in nitrogen assimilation in tea plants could lead to improvements in both tea yield and quality. Here, we first conducted transcriptome sequencing on two tissues (roots and young leaves) under two different nitrate levels (0.2 and 2.5 mm KNO3) and at six time points (0, 15, and 45 min; 2 and 6 h and 2 days). Differential gene expression patterns were observed for several genes that exhibited altered expression at 2 h. Clustering and enrichment analyses, along with co-expression network construction, provided evidence for the crucial involvement of CsSNACA2 in nitrogen assimilation. CsSNACA2 overexpression elicited pronounced phenotypic changes in nitrogen-deficient plants. Furthermore, CsSNACA2 suppressed the expression of CsNR (encoding nitrate reductase) and CsCLCa (encoding aNO 3 - /H+ exchanger). Moreover, CsSNACA2 served as a downstream target of CsSPL6.1. In addition, we characterized Csi-miR156e and Csi-miR156k, which directly cleave CsSPL6.1. This study identified a transcription factor module participating in nitrogen assimilation in tea plants, providing a genetic foundation for future innovations in tea cultivar improvement. These results broaden our understanding of the genetic mechanisms governing nitrogen assimilation in dicotyledonous plants.
Collapse
Affiliation(s)
- Deyuan Jiang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Xu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiwei Wen
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
2
|
Samarina L, Malyukova L, Wang S, Bobrovskikh A, Doroshkov A, Shkhalakhova R, Manakhova K, Koninskaya N, Matskiv A, Ryndin A, Khlestkina E, Orlov Y. In Vitro vs. In Vivo Transcriptomic Approach Revealed Core Pathways of Nitrogen Deficiency Response in Tea Plant ( Camellia sinensis (L.) Kuntze). Int J Mol Sci 2024; 25:11726. [PMID: 39519276 PMCID: PMC11547157 DOI: 10.3390/ijms252111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
For the first time, we used an in vitro vs. in vivo experimental design to reveal core pathways under nitrogen deficiency (ND) in an evergreen tree crop. These pathways were related to lignin biosynthesis, cell redox homeostasis, the defense response to fungus, the response to Karrikin, amino acid transmembrane transport, the extracellular region, the cellular protein catabolic process, and aspartic-type endopeptidase activity. In addition, the mitogen-activated protein kinase pathway and ATP synthase (ATP)-binding cassette transporters were significantly upregulated under nitrogen deficiency in vitro and in vivo. Most of the MAPK downstream genes were related to calcium signaling (818 genes) rather than hormone signaling (157 genes). Moreover, the hormone signaling pathway predominantly contained auxin- and abscisic acid-related genes, indicating the crucial role of these hormones in ND response. Overall, 45 transcription factors were upregulated in both experiments, 5 WRKYs, 3 NACs, 2 MYBs, 2 ERFs, HD-Zip, RLP12, bHLH25, RADIALIS-like, and others, suggesting their ND regulation is independent from the presence of a root system. Gene network reconstruction displayed that these transcription factors participate in response to fungus/chitin, suggesting that nitrogen response and pathogen response have common regulation. The upregulation of lignin biosynthesis genes, cytochrome genes, and strigalactone response genes was much more pronounced under in vitro ND as compared to in vivo ND. Several cell wall-related genes were closely associated with cytochromes, indicating their important role in flavanols biosynthesis in tea plant. These results clarify the signaling mechanisms and regulation of the response to nitrogen deficiency in evergreen tree crops.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Lyudmila Malyukova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Songbo Wang
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Aleksandr Bobrovskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.); (A.D.)
| | - Alexey Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.); (A.D.)
| | - Ruset Shkhalakhova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Karina Manakhova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Natalia Koninskaya
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Alexandra Matskiv
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Alexey Ryndin
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Elena Khlestkina
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Yuriy Orlov
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
3
|
Lin S, Zhang Y, Zhang S, Wei Y, Han M, Deng Y, Guo J, Zhu B, Yang T, Xia E, Wan X, Lucas WJ, Zhang Z. Root-specific theanine metabolism and regulation at the single-cell level in tea plants ( Camellia sinensis). eLife 2024; 13:RP95891. [PMID: 39401074 PMCID: PMC11473105 DOI: 10.7554/elife.95891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Root-synthesized secondary metabolites are critical quality-conferring compounds of foods, plant-derived medicines, and beverages. However, information at a single-cell level on root-specific secondary metabolism remains largely unexplored. L-Theanine, an important quality component of tea, is primarily synthesized in roots, from which it is then transported to new shoots of tea plant. In this study, we present a single-cell RNA sequencing (scRNA-seq)-derived map for the tea plant root, which enabled cell-type-specific analysis of glutamate and ethylamine (two precursors of theanine biosynthesis) metabolism, and theanine biosynthesis, storage, and transport. Our findings support a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. This study provides novel insights into theanine metabolism and regulation, at the single-cell level, and offers an example for studying root-specific secondary metabolism in other plant systems.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yiwen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yijie Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yamei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Jiayi Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, DavisDavisUnited States
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| |
Collapse
|
4
|
Wang X, Zhou Y, Chai X, Foster TM, Deng CH, Wu T, Zhang X, Han Z, Wang Y. miR164-MhNAC1 regulates apple root nitrogen uptake under low nitrogen stress. THE NEW PHYTOLOGIST 2024; 242:1218-1237. [PMID: 38481030 DOI: 10.1111/nph.19663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024]
Abstract
Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yan Zhou
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Toshi M Foster
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Motueka, 7198, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Auckland, 1025, New Zealand
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), The Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
5
|
Samarina L, Fedorina J, Kuzmina D, Malyukova L, Manakhova K, Kovalenko T, Matskiv A, Xia E, Tong W, Zhang Z, Ryndin A, Orlov YL, Khlestkina EK. Analysis of Functional Single-Nucleotide Polymorphisms (SNPs) and Leaf Quality in Tea Collection under Nitrogen-Deficient Conditions. Int J Mol Sci 2023; 24:14538. [PMID: 37833988 PMCID: PMC10572165 DOI: 10.3390/ijms241914538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
This study discusses the genetic mutations that have a significant association with economically important traits that would benefit tea breeders. The purpose of this study was to analyze the leaf quality and SNPs in quality-related genes in the tea plant collection of 20 mutant genotypes growing without nitrogen fertilizers. Leaf N-content, catechins, L-theanine, and caffeine contents were analyzed in dry leaves via HPLC. Additionally, the photochemical yield, electron transport efficiency, and non-photochemical quenching were analyzed using PAM-fluorimetry. The next generation pooled amplicon-sequencing approach was used for SNPs-calling in 30 key genes related to N metabolism and leaf quality. The leaf N content varied significantly among genotypes (p ≤ 0.05) from 2.3 to 3.7% of dry mass. The caffeine content varied from 0.7 to 11.7 mg g-1, and the L-theanine content varied from 0.2 to 5.8 mg g-1 dry leaf mass. Significant positive correlations were detected between the nitrogen content and biochemical parameters such as theanine, caffeine, and most of the catechins. However, significant negative correlations were observed between the photosynthetic parameters (Y, ETR, Fv/Fm) and several biochemical compounds, including rutin, Quercetin-3-O-glucoside, Kaempferol-3-O-rutinoside, Kaempferol-3-O-glucoside, Theaflavin-3'-gallate, gallic acid. From our SNP-analysis, three SNPs in WRKY57 were detected in all genotypes with a low N content. Moreover, 29 SNPs with a high or moderate effect were specific for #316 (high N-content, high quality) or #507 (low N-content, low quality). The use of a linear regression model revealed 16 significant associations; theaflavin, L-theanine, and ECG were associated with several SNPs of the following genes: ANSa, DFRa, GDH2, 4CL, AlaAT1, MYB4, LHT1, F3'5'Hb, UFGTa. Among them, seven SNPs of moderate effect led to changes in the amino acid contents in the final proteins of the following genes: ANSa, GDH2, 4Cl, F3'5'Hb, UFGTa. These results will be useful for further evaluations of the important SNPs and will help to provide a better understanding of the mechanisms of nitrogen uptake efficiency in tree crops.
Collapse
Affiliation(s)
- Lidiia Samarina
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Jaroslava Fedorina
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Daria Kuzmina
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Karina Manakhova
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Tatyana Kovalenko
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (E.X.)
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (E.X.)
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (E.X.)
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
| | - Yuriy L. Orlov
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 344002 Sochi, Russia; (L.M.); (A.M.)
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Elena K. Khlestkina
- Center of Genetics and Life Sciences Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, 354340 Sirius, Russia; (L.S.); (J.F.); (D.K.); (K.M.); (T.K.); (E.K.K.)
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 196632 Saint Petersburg, Russia
| |
Collapse
|
6
|
Zhang W, Ni K, Long L, Ruan J. Nitrogen transport and assimilation in tea plant ( Camellia sinensis): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1249202. [PMID: 37810380 PMCID: PMC10556680 DOI: 10.3389/fpls.2023.1249202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Nitrogen is one of the most important nutrients for tea plants, as it contributes significantly to tea yield and serves as the component of amino acids, which in turn affects the quality of tea produced. To achieve higher yields, excessive amounts of N fertilizers mainly in the form of urea have been applied in tea plantations where N fertilizer is prone to convert to nitrate and be lost by leaching in the acid soils. This usually results in elevated costs and environmental pollution. A comprehensive understanding of N metabolism in tea plants and the underlying mechanisms is necessary to identify the key regulators, characterize the functional phenotypes, and finally improve nitrogen use efficiency (NUE). Tea plants absorb and utilize ammonium as the preferred N source, thus a large amount of nitrate remains activated in soils. The improvement of nitrate utilization by tea plants is going to be an alternative aspect for NUE with great potentiality. In the process of N assimilation, nitrate is reduced to ammonium and subsequently derived to the GS-GOGAT pathway, involving the participation of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). Additionally, theanine, a unique amino acid responsible for umami taste, is biosynthesized by the catalysis of theanine synthetase (TS). In this review, we summarize what is known about the regulation and functioning of the enzymes and transporters implicated in N acquisition and metabolism in tea plants and the current methods for assessing NUE in this species. The challenges and prospects to expand our knowledge on N metabolism and related molecular mechanisms in tea plants which could be a model for woody perennial plant used for vegetative harvest are also discussed to provide the theoretical basis for future research to assess NUE traits more precisely among the vast germplasm resources, thus achieving NUE improvement.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Ni
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| | - Lizhi Long
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| |
Collapse
|
7
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
8
|
Mi X, Yang C, Qiao D, Tang M, Guo Y, Liang S, Li Y, Chen Z, Chen J. De novo full length transcriptome analysis of a naturally caffeine-free tea plant reveals specificity in secondary metabolic regulation. Sci Rep 2023; 13:6015. [PMID: 37045909 PMCID: PMC10097665 DOI: 10.1038/s41598-023-32435-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Tea plants are crops with economic, health and cultural value. Catechin, caffeine and theanine are the main secondary metabolites of taste. In the process of germplasm collection, we found a resource in the Sandu Aquatic Autonomous County of Guizhou (SDT) that possessed significantly different characteristic metabolites compared with the cultivar 'Qiancha 1'. SDT is rich in theobromine and theophylline, possesses low levels of (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-gallate, and theanine content, and is almost free of caffeine. However, research on this tea resource is limited. Full-length transcriptome analysis was performed to investigate the transcriptome and gene expression of these metabolites. In total, 78,809 unique transcripts were obtained, of which 65,263 were complete coding sequences. RNA-seq revealed 3415 differentially expressed transcripts in the tender leaves of 'Qiancha 1' and 'SDT'. Furthermore, 2665, 6231, and 2687 differentially expressed transcripts were found in different SDT tissues. These differentially expressed transcripts were enriched in flavonoid and amino acid metabolism processes. Co-expression network analysis identified five modules associated with metabolites and found that genes of caffeine synthase (TCS) may be responsible for the low caffeine content in SDT. Phenylalanine ammonia lyase (PAL), glutamine synthetase (GS), glutamate synthase (GOGAT), and arginine decarboxylase (ADC) play important roles in the synthesis of catechin and theanine. In addition, we identified that ethylene resposive factor (ERF) and WRKY transcription factors may be involved in theanine biosynthesis. Overall, our study provides candidate genes to improve understanding of the synthesis mechanisms of these metabolites and provides a basis for molecular breeding of tea plant.
Collapse
Affiliation(s)
- Xiaozeng Mi
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Chun Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Mengsha Tang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Yan Guo
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Sihui Liang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Yan Li
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Zhengwu Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China
| | - Juan Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
9
|
Zhang X, Feng J, Zhao R, Cheng H, Ashraf J, Wang Q, Lv L, Zhang Y, Song G, Zuo D. Functional characterization of the GhNRT2.1e gene reveals its significant role in improving nitrogen use efficiency in Gossypium hirsutum. PeerJ 2023; 11:e15152. [PMID: 37009157 PMCID: PMC10064996 DOI: 10.7717/peerj.15152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Background
Nitrate is the primary type of nitrogen available to plants, which is absorbed and transported by nitrate transporter 2 (NRT2) at low nitrate conditions.
Methods
Genome-wide identification of NRT2 genes in G. hirsutum was performed. Gene expression patterns were revealed using RNA-seq and qRT-PCR. Gene functions were characterized using overexpression in A. thaliana and silencing in G. hirsutum. Protein interactions were verified by yeast two-hybrid and luciferase complementation imaging (LCI) assays.
Results
We identified 14, 14, seven, and seven NRT2 proteins in G. hirsutum, G. barbadense, G. raimondii, and G. arboreum. Most NRT2 proteins were predicted in the plasma membrane. The NRT2 genes were classified into four distinct groups through evolutionary relationships, with members of the same group similar in conserved motifs and gene structure. The promoter regions of NRT2 genes included many elements related to growth regulation, phytohormones, and abiotic stresses. Tissue expression pattern results revealed that most GhNRT2 genes were specifically expressed in roots. Under low nitrate conditions, GhNRT2 genes exhibited different expression levels, with GhNRT2.1e being the most up-regulated. Arabidopsis plants overexpressing GhNRT2.1e exhibited increased biomass, nitrogen and nitrate accumulation, nitrogen uptake and utilization efficiency, nitrogen-metabolizing enzyme activity, and amino acid content under low nitrate conditions. In addition, GhNRT2.1e-silenced plants exhibited suppressed nitrate uptake and accumulation, hampered plant growth, affected nitrogen metabolism processes, and reduced tolerance to low nitrate. The results showed that GhNRT2.1e could promote nitrate uptake and transport under low nitrate conditions, thus effectively increasing nitrogen use efficiency (NUE). We found that GhNRT2.1e interacts with GhNAR2.1 by yeast two-hybrid and LCI assays.
Discussion
Our research lays the foundation to increase NUE and cultivate new cotton varieties with efficient nitrogen use.
Collapse
Affiliation(s)
- Xinmiao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jiajia Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Ruolin Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Javaria Ashraf
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
10
|
Sunseri F, Aci MM, Mauceri A, Caldiero C, Puccio G, Mercati F, Abenavoli MR. Short-term transcriptomic analysis at organ scale reveals candidate genes involved in low N responses in NUE-contrasting tomato genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1125378. [PMID: 36938018 PMCID: PMC10020590 DOI: 10.3389/fpls.2023.1125378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Understanding the complex regulatory network underlying plant nitrogen (N) responses associated with high Nitrogen Use Efficiency (NUE) is one of the main challenges for sustainable cropping systems. Nitrate (NO3 -), acting as both an N source and a signal molecule, provokes very fast transcriptome reprogramming, allowing plants to adapt to its availability. These changes are genotype- and tissue-specific; thus, the comparison between contrasting genotypes is crucial to uncovering high NUE mechanisms. METHODS Here, we compared, for the first time, the spatio-temporal transcriptome changes in both root and shoot of two NUE contrasting tomato genotypes, Regina Ostuni (high-NUE) and UC82 (low-NUE), in response to short-term (within 24 h) low (LN) and high (HN) NO3 - resupply. RESULTS Using time-series transcriptome data (0, 8, and 24 h), we identified 395 and 482 N-responsive genes differentially expressed (DEGs) between RO and UC82 in shoot and root, respectively. Protein kinase signaling plant hormone signal transduction, and phenylpropanoid biosynthesis were the main enriched metabolic pathways in shoot and root, respectively, and were upregulated in RO compared to UC82. Interestingly, several N transporters belonging to NRT and NPF families, such as NRT2.3, NRT2.4, NPF1.2, and NPF8.3, were found differentially expressed between RO and UC82 genotypes, which might explain the contrasting NUE performances. Transcription factors (TFs) belonging to several families, such as ERF, LOB, GLK, NFYB, ARF, Zinc-finger, and MYB, were differentially expressed between genotypes in response to LN. A complementary Weighted Gene Co-expression Network Analysis (WGCNA) allowed the identification of LN-responsive co-expression modules in RO shoot and root. The regulatory network analysis revealed candidate genes that might have key functions in short-term LN regulation. In particular, an asparagine synthetase (ASNS), a CBL-interacting serine/threonine-protein kinase 1 (CIPK1), a cytokinin riboside 5'-monophosphate phosphoribohydrolase (LOG8), a glycosyltransferase (UGT73C4), and an ERF2 were identified in the shoot, while an LRR receptor-like serine/threonine-protein kinase (FEI1) and two TFs NF-YB5 and LOB37 were identified in the root. DISCUSSION Our results revealed potential candidate genes that independently and/or concurrently may regulate short-term low-N response, suggesting a key role played by cytokinin and ROS balancing in early LN regulation mechanisms adopted by the N-use efficient genotype RO.
Collapse
Affiliation(s)
- Francesco Sunseri
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Palermo, Italy
| | - Meriem Miyassa Aci
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Antonio Mauceri
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Ciro Caldiero
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Guglielmo Puccio
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Palermo, Italy
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
| | - Francesco Mercati
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Palermo, Italy
| | - Maria Rosa Abenavoli
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
11
|
Zhang Y, Wei K, Guo L, Lei Y, Cheng H, Chen C, Wang L. Functional identification of purine permeases reveals their roles in caffeine transport in tea plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1033316. [PMID: 36589051 PMCID: PMC9798130 DOI: 10.3389/fpls.2022.1033316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Caffeine is a characteristic secondary metabolite in tea plants. It confers tea beverage with unique flavor and excitation effect on human body. The pathway of caffeine biosynthesis has been generally established, but the mechanism of caffeine transport remains unclear. Here, eight members of purine permeases (PUPs) were identified in tea plants. They had diverse expression patterns in different tissues, suggesting their broad roles in caffeine metabolism. In this study, F1 strains of "Longjing43" ♂ × "Baihaozao" ♀ and different tea cultivars were used as materials to explore the correlation between caffeine content and gene expression. The heterologous expression systems of yeast and Arabidopsis were applied to explore the function of CsPUPs. Correlation analysis showed that the expressions of CsPUP1, CsPUP3.1, and CsPUP10.1 were significantly negatively correlated with caffeine content in tea leaves of eight strains and six cultivars. Furthermore, subcellular localization revealed that the three CsPUPs were not only located in plasma membrane but also widely distributed as circular organelles in cells. Functional complementation assays in yeast showed that the three CsPUPs could partly or completely rescue the defective function of fcy2 mutant in caffeine transport. Among them, transgenic yeast of CsPUP10.1 exhibited the strongest transport capacity for caffeine. Consistent phenotypes and functions were further identified in the CsPUP10.1-over-expression Arabidopsis lines. Taken together, it suggested that CsPUPs were involved in caffeine transport in tea plants. Potential roles of CsPUPs in the intracellular transport of caffeine among different subcellular organelles were proposed. This study provides a theoretical basis for further research on the PUP genes and new insights for caffeine metabolism in tea plants.
Collapse
Affiliation(s)
- Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Lingling Guo
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Yuping Lei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, China
| |
Collapse
|
12
|
Chai X, Wang X, Pi Y, Wu T, Zhang X, Xu X, Han Z, Wang Y. Nitrate transporter MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6490-6504. [PMID: 35792505 DOI: 10.1093/jxb/erac301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants have developed complex mechanisms to adapt to changing nitrate (NO3-) concentrations and can recruit microbes to boost nitrogen absorption. However, little is known about the relationship between functional genes and the rhizosphere microbiome in NO3- uptake of apple rootstocks. Here, we found that variation in Malus domestica NO3- transporter (MdNRT2.4) expression contributes to nitrate uptake divergence between two apple rootstocks. Overexpression of MdNRT2.4 in apple seedlings significantly improved tolerance to low nitrogen via increasing net NO3- influx at the root surface. However, inhibiting the root plasma membrane H+-ATPase activity abolished NO3- uptake and led to NO3- release, suggesting that MdNRT2.4 encodes an H+-coupled nitrate transporter. Surprisingly, the nitrogen concentration of MdNRT2.4-overexpressing apple seedlings in unsterilized nitrogen-poor soil was higher than that in sterilized nitrogen-poor soil. Using 16S ribosomal RNA gene profiling to characterize the rhizosphere microbiota, we found that MdNRT2.4-overexpressing apple seedlings recruited more bacterial taxa with nitrogen metabolic functions, especially Rhizobiaceae. We isolated a bacterial isolate ARR11 from the apple rhizosphere soil and identified it as Rhizobium. Inoculation with ARR11 improved apple seedling growth in nitrogen-poor soils, compared with uninoculated seedlings. Together, our results highlight the interaction of host plant genes with the rhizosphere microbiota for host plant nutrient uptake.
Collapse
Affiliation(s)
- Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Ying Pi
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
13
|
Systematic Investigation and Expression Profiles of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in Tea Plant ( Camellia sinensis). Int J Mol Sci 2022; 23:ijms23126663. [PMID: 35743106 PMCID: PMC9223465 DOI: 10.3390/ijms23126663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
NRT1/PTR FAMILY (NPF) genes are characterized as nitrate and peptide transporters that played important roles in various substrates transport in plants. However, little is known about the NPF gene in tea plants. Here, a total of 109 CsNPF members were identified from the tea plant genome, and divided into 8 groups according to their sequence characteristics and phylogenetic relationship. Gene structure and conserved motif analysis supported the evolutionary conservation of CsNPFs. Many hormone and stress response cis-acting elements and transcription factor binding sites were found in CsNPF promoters. Syntenic analysis suggested that multiple duplication types contributed to the expansion of NPF gene family in tea plants. Selection pressure analysis showed that CsNPF genes experienced strong purifying selective during the evolution process. The distribution of NPF family genes revealed that 8 NPF subfamilies were formed before the divergence of eudicots and monocots. Transcriptome analysis showed that CsNPFs were expressed differently in different tissues of the tea plant. The expression of 20 CsNPF genes at different nitrate concentrations was analyzed, and most of those genes responded to nitrate resupply. Subcellular localization showed that both CsNPF2.3 and CsNPF6.1 were localized in the plasma membrane, which was consistent with the characteristics of transmembrane proteins involved in NO3- transport. This study provides a theoretical basis for further investigating the evolution and function of NPF genes.
Collapse
|
14
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
15
|
Cao Q, Lv W, Jiang H, Chen X, Wang X, Wang Y. Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress. Int J Biol Macromol 2022; 205:749-760. [PMID: 35331791 DOI: 10.1016/j.ijbiomac.2022.03.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 01/04/2023]
Abstract
Glutathione S-transferases (GSTs) are ubiquitous enzymes involved in the regulation of plant growth, development, and stress responses. Unfortunately, the comprehensive identification of GSTs in tea plant has not been achieved. In this study, a total of 88 CsGSTs proteins were identified and divided into eight classes, among which the tau class was the largest. Chromosomal localization analysis revealed an uneven distribution of CsGSTs across the tea plant genome. Tandem duplication is the main force driving tea plant CsGSTs expansion. CsGSTs structures and conserved motifs were similar. The analysis of cis-regulatory elements in promoter regions showed that CsGSTs can response to multiple stresses, and that MYB may be involved in the transcriptional regulation of CsGST. RNA-Seq data revealed that the expression of most GSTUs was associated with various stresses, including pathogen and insect attack, cold spells, drought and salt stresses, nitrogen nutrition, bud dormancy, and morphological development, and the expression of these CsGSTs was obviously different in eight tissues. In addition, we proved that CsGSTU19, localized at the nucleus and cell membrane, was involved in tea plant defense against temperature stresses and Co. camelliae infection. These findings provide references for the further functional analysis of GSTs in the future.
Collapse
Affiliation(s)
- Qinghai Cao
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou, 310008, Zhejiang, China
| | - Wuyun Lv
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Hong Jiang
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xueling Chen
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou, 310008, Zhejiang, China.
| | - Yuchun Wang
- College of Tea Science and Tea Culture/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|