1
|
Kong Y, Wang H, Qiao L, Du T, Luo J, Liu Y, Yang B. Exogenous application of luteolin enhances wheat resistance to Puccinia striiformis f. sp. tritici. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109674. [PMID: 40020601 DOI: 10.1016/j.plaphy.2025.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
The accumulation of flavonoids facilitates plant resistance to biotic stress. However, few studies have explored the functions of flavonoids during the interaction between wheat and Puccinia striiformis Westendorp f. sp. tritici Eriksson (Pst). This study analyzed the expression profiles of flavonoids and their biosynthesis genes in the resistant accession Y0337 and the susceptible accession Y0402 infected with Pst. The results showed that flavonoid biosynthesis pathway (FBP) genes were induced during early Pst infection. Among these, 29 initial FBP DEGs exhibited higher expression during incompatible interaction. Further, the total levels of 12 identified flavonoids were higher during incompatible interaction; among these, apigenin, luteolin, cynaroside were accumulated and naringenin was decreased, they may play a crucial role in Pst resistance. Integrated analysis of the transcriptome and metabolome showed that 21 DEGs regulated four crucial flavonoids biosynthesis. The gene regulatory network suggested that the transcription factors EFRs, WRKYs, NACs, and bHLHs potentially regulated four flavonoids biosynthesis. Additionally, it was shown that luteolin inhibited spore germination and infection of Pstin vivo and in vitro. In summary, these results enhance our understanding of the flavonoids biosynthesis in wheat resistance to Pst and highlight the role of luteolin in this process.
Collapse
Affiliation(s)
- Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Tingting Du
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianfei Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiling Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Yan Y, Wang Y, Wen Y, Huang Y, Zhang M, Huang J, Li X, Wang C, Xu D. Metabolome and transcriptome integration reveals insights into petals coloration mechanism of three species in Sect. Chrysantha chang. PeerJ 2024; 12:e17275. [PMID: 38650646 PMCID: PMC11034495 DOI: 10.7717/peerj.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Background Sect. Chrysantha Chang, belonging to the Camellia genus, is one of the rare and precious ornamental plants distinguished by a distinctive array of yellow-toned petals. However, the variation mechanisms of petal color in Sect. Chrysantha Chang remains largely unclear. Methods We conducted an integrated analysis of metabolome and transcriptome to reveal petal coloration mechanism in three species, which have different yellow tones petals, including C. chuongtsoensis (CZ, golden yellow), C. achrysantha (ZD, light yellow), and C. parvipetala (XB, milk white). Results A total of 356 flavonoid metabolites were detected, and 295 differential metabolites were screened. The contents of 74 differential metabolites showed an upward trend and 19 metabolites showed a downward trend, among which 11 metabolites were annotated to the KEGG pathway database. We speculated that 10 metabolites were closely related to the deepening of the yellowness. Transcriptome analysis indicated that there were 2,948, 14,018 and 13,366 differentially expressed genes (DEGs) between CZ vs. ZD, CZ vs. XB and ZD vs. XB, respectively. Six key structural genes (CcCHI, CcFLS, CcDFR1, CcDFR2, CcDFR3, and CcCYP75B1) and five candidate transcription factors (MYB22, MYB28, MYB17, EREBP9, and EREBP13) were involved in the regulation of flavonoid metabolites. The findings indicate that flavonoid compounds influence the color intensity of yellow-toned petals in Sect. Chrysantha Chang. Our results provide a new perspective on the molecular mechanisms underlying flower color variation and present potential candidate genes for Camellia breeding.
Collapse
Affiliation(s)
- Yadan Yan
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Ye Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Yafeng Wen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Yu Huang
- Nanning University, Nanning, China
| | - Minhuan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Jiadi Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Xinyu Li
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | - Chuncheng Wang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, China
| | | |
Collapse
|
3
|
Zhang H, Zhang H, Wang Y, Wang M, Guo H, Chan Y, Cong R, Zhao S, Xie J. High-quality maple genome reveals duplication-facilitated leaf color diversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111917. [PMID: 37944703 DOI: 10.1016/j.plantsci.2023.111917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Acer truncatum is a horticultural tree species with individuals that display either yellow or red leaves in autumn, giving it high ornamental and economic value. 'Lihong' of A. truncatum is an excellent cultivar due to its characteristic of having autumn leaves that turn a bright and beautiful shade of red, while its closely related cultivar 'Bunge' does not. However, the molecular mechanism underlying the color change in the cultivar 'Lihong' is still unclear. Here, we assembled a high-quality genome sequence of Acer truncatum 'Lihong' (genome size = 688 Mb, scaffold N50 = 9.14 Mb) with 28,438 protein-coding genes predicted. Through comparative genomic analysis, we found that 'Lihong' had experienced more tandem duplication events although it's a high degree of collinearity with 'Bunge'. Especially, the expansion of key enzymes in the anthocyanin synthesis pathway was significantly uneven between the two varieties, with 'Lihong' genome containing a significantly higher number of tandem/dispersed duplication key genes. Further transcriptomic, metabolomic, and molecular functional analyses demonstrated that several UFGT genes, mainly resulting from tandem/dispersed duplication, followed by the promoter sequence variation, may contribute greatly to the leaf color phenotype, which provides new insights into the mechanism of divergent anthocyanin accumulation process in the 'Lihong' and 'Bunge' with yellow leaves in autumn. Further, constitutive expression of two UFGT genes, which showed higher expression in 'Lihong', elevated the anthocyanin content. We proposed that the small-scale duplication events could contribute to phenotype innovation.
Collapse
Affiliation(s)
- Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China.
| | - Haoyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yongge Wang
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Maoliang Wang
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Hao Guo
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Yuan Chan
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Richen Cong
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Shiwei Zhao
- Beijing Key Laboratory of Greening Plants Breeding,Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China; The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, China.
| |
Collapse
|
4
|
Kang Y, Li Y, Zhang T, Wang P, Liu W, Zhang Z, Yu W, Wang J, Wang J, Zhou Y. Integrated metabolome, full-length sequencing, and transcriptome analyses unveil the molecular mechanisms of color formation of the canary yellow and red bracts of Bougainvillea × buttiana 'Chitra'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1441-1461. [PMID: 37648415 DOI: 10.1111/tpj.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Bougainvillea is a typical tropical flower of great ornamental value due to its colorful bracts. The molecular mechanism behind color formation is not well-understood. Therefore, this research conducted metabolome analysis, transcriptome analysis, and multi-flux full-length sequencing in two color bracts of Bougainvillea × buttiana 'Chitra' to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs). Overall, 261 SDMs, including 62 flavonoids and 26 alkaloids, were detected, and flavonols and betalains were significantly differentially accumulated among the two bracts. Furthermore, the complete-length transcriptome of Bougainvillea × buttiana was also developed, which contained 512 493 non-redundant isoforms. Among them, 341 210 (66.58%) displayed multiple annotations in the KOG, GO, NR, KEGG, Pfam, Swissprot, and NT databases. RNA-seq findings revealed that 3610 DEGs were identified between two bracts. Co-expression analysis demonstrated that the DEGs and SDMs involved in flavonol metabolism (such as CHS, CHI, F3H, FLS, CYP75B1, kaempferol, and quercetin) and betacyanin metabolism (DODA, betanidin, and betacyanins) were the main contributors for the canary yellow and red bract formation, respectively. Further investigation revealed that several putative transcription factors (TFs) might interact with the promoters of the genes mentioned above. The expression profiles of the putative TFs displayed that they may positively and negatively regulate the structural genes' expression profiles. The data revealed a potential regulatory network between important genes, putative TFs, and metabolites in the flavonol and betacyanin biosynthesis of Bougainvillea × buttiana 'Chitra' bracts. These findings will serve as a rich genetic resource for future studies that could create new color bracts.
Collapse
Affiliation(s)
- Yuqian Kang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441057, Hubei, People's Republic of China
| | - Peng Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Zhao Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wengang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| |
Collapse
|
5
|
Zhaogao L, Yaxuan W, Mengwei X, Haiyu L, Lin L, Delin X. Molecular mechanism overview of metabolite biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108125. [PMID: 37883919 DOI: 10.1016/j.plaphy.2023.108125] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Medicinal plants are essential and rich resources for plant-based medicines and new drugs. Increasing attentions are paid to the secondary metabolites of medicinal plants due to their unique biological activity, pharmacological action, and high utilization value. However, the development of medicinal plants is constrained by limited natural resources and an unclear understanding of the mechanisms underlying active medicinal ingredients, thereby rendering the utilization and exploration of secondary metabolites more challenging. Besides, with the advancement of research on biosynthesis and molecular metabolism of natural products from medicinal plants, the methods for studying the biological activity and pharmacological effects of these products are constantly evolving. In recent years, significant progress has been made in the biosynthetic pathways and related regulatory genes of secondary metabolites in medicinal plants, which has greatly advanced both basic research and the development of clinical applications for medicinal plants. In this review, we discuss the past two decades of international research on the development of medicinal plant resources, mainly focusing on the biosynthetic pathway of secondary metabolites, intracellular signal transduction processes, multi-omics applications, and the application of gene editing technology in related research progress. We also discuss future development trends to promote the deep mining and development of natural products from medicinal plants, providing a useful reference.
Collapse
Affiliation(s)
- Li Zhaogao
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Wang Yaxuan
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Xu Mengwei
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Liu Haiyu
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Li Lin
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| | - Xu Delin
- Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China; Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, No.6 Xuefuxi Road Xinpu District of Zunyi City, Zunyi, 563099, Guizhou, China.
| |
Collapse
|
6
|
Guo X, Wang G, Li J, Li J, Sun X. Analysis of Floral Color Differences between Different Ecological Conditions of Clematis tangutica (Maxim.) Korsh. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010462. [PMID: 36615653 PMCID: PMC9824731 DOI: 10.3390/molecules28010462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
The Clematis tangutica (Maxim.) Korsh. is a wild flowering plant that is most widely distributed on the Qinghai-Tibet Plateau, with beautiful, brightly colored flowers and good ornamental properties and adaptability. In diverse natural environments, the blossom color of C. tangutica (Maxim.) Korsh. varies greatly, although it is unclear what causes this diversity. It was examined using UPLC-MS/MS and transcriptome sequencing for the investigation of various compounds, differentially expressed genes (DEGs), and flavonoid biosynthesis-related pathways in two flowers in two ecological settings. The results showed that a total of 992 metabolites were detected, of which 425 were differential metabolites, mainly flavonoid metabolites associated with its floral color. The most abundant flavonoids, flavonols and anthocyanin metabolites in the G type were cynaroside, isoquercitrin and peonidin-3-O-glucoside, respectively. Flavonoids that differed in multiplicity in G type and N type were rhoifolin, naringin, delphinidin-3-O-rutinoside, chrysoeriol and catechin. Rhoifolin and chrysoeriol, produced in flavone and flavonol biosynthesis, two flavonoid compounds of C. tangutica (Maxim.) Korsh. with the largest difference in floral composition in two ecological environments. In two ecological environments of flower color components, combined transcriptome and metabolome analyses revealed that BZ1-1 and FG3-1 are key genes for delphinidin-3-O-rutinoside in anthocyanin biosynthesis, and HCT-5 and FG3-3 are key genes for rhoifolin and naringin in flavonoid biosynthesis and flavone and flavonol. Key genes for chlorogenic acid in flavonoid biosynthesis include HCT-6, CHS-1 and IF7MAT-1. In summary, differences in flavonoids and their content are the main factors responsible for the differences in the floral color composition of C. tangutica (Maxim.) Korsh. in the two ecological environments, and are associated with differential expression of genes related to flavonoid synthesis.
Collapse
Affiliation(s)
- Xiaozhu Guo
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xining 810016, China
| | - Gui Wang
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xining 810016, China
| | - Juan Li
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xining 810016, China
| | - Jiang Li
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xining 810016, China
| | - Xuemei Sun
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xining 810016, China
- Correspondence:
| |
Collapse
|