1
|
Liu J, Wang J, Chen M, Meng W, Ding A, Chen M, Ding R, Tan M, Xiang Z. Multi-Omics Analyses Uncover the Mechanism Underlying Polyploidization-Enhanced Steviol Glycosides Biosynthesis in Stevia rebaudiana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2542. [PMID: 39339518 PMCID: PMC11434884 DOI: 10.3390/plants13182542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Stevia rebaudiana (Bertoni) is a valuable sweetener plant whose sweetness primarily derives from steviol glycosides (SGs), especially rebaudioside A (RA). Polyploidization has the potential to enhance the content of active ingredients in medicinal plants, making this strategy a promising avenue for genetic improvement. However, the underlying regulatory mechanisms that contribute to the fluctuating SGs content between autotetraploid and diploid stevia remain unclear. In this study, we employed metabolic analysis to identify 916 differentially accumulated metabolites (DAMs), with the majority, specifically terpenoids, flavonoids, and lipids, exhibiting upregulation due to polyploidization. Notably, the content of stevia's signature metabolite SGs (including RA, steviolbioside, and rebaudioside C), along with their precursor steviol, increased significantly after polyploidization. Furthermore, a comprehensive analysis of the transcriptome and metabolome revealed that the majority of differentially expressed genes (DEGs) involved in the SG-synthesis pathway (ent-KAH, ent-KS1, UGT73E1, UGT74G1, UGT76G1, UGT85C2, and UGT91D2) were upregulated in autotetraploid stevia, and these DEGs exhibited a positive correlation with the polyploidization-enhanced SGs. Additionally, multi-omics network analysis indicated that several transcription factor families (such as five NACs, four WRKYs, three MYBs, eight bHLHs, and three AP2/ERFs), various transporter genes (four ABC transporters, three triose-phosphate transporters, and two sugar efflux transporters for intercellular exchange), as well as microorganisms (including Ceratobasidium and Flavobacterium) were positively correlated with the accumulation of RA and steviol. Overall, our results indicate the presence of a regulatory circuit orchestrated by polyploidization, which recruits beneficial rhizosphere microbes and modulates the expression of genes associated with SG biosynthesis, ultimately enhancing the SG content in stevia. This finding will provide new insights for promoting the propagation and industrial development of stevia.
Collapse
Affiliation(s)
- Juan Liu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxue Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingjia Chen
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenna Meng
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Anping Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongping Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingpu Tan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxu Xiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Chen W, Yan A, Sun T, Wang X, Sun W, Pan B. Self-nanomicellizing solid dispersion: A promising platform for oral drug delivery. Colloids Surf B Biointerfaces 2024; 241:114057. [PMID: 38924852 DOI: 10.1016/j.colsurfb.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Amorphous solid dispersion (ASD) has been widely used to enhance the oral bioavailability of water-insoluble drugs for oral delivery because of its advantages of enhancing solubility and dissolution rate. However, the problems related to drug recrystallization after drug dissolution in media or body fluid have constrained its application. Recently, a self-nanomicellizing solid dispersion (SNMSD) has been developed by incorporating self-micellizing polymers as carriers to settle the problems, markedly improving the ability of supersaturation maintenance and enhancing the oral bioavailability of drug. Spontaneous formation and stability of the self-nanomicelle (SNM) have been proved to be the key to supersaturation maintenance of SNMSD system. This offers a novel research direction for maintaining supersaturation and enhancing the bioavailability of ASDs. To delve into the advantages of SNMSDs, we provide a concise review introducing the formation mechanism, characterization methods and stability of SNMs, emphasizing the advantages of SNMSDs for oral drug delivery facilitated by SNM formation, and discussing relevant research prospects.
Collapse
Affiliation(s)
- Weitao Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - An Yan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
3
|
Adeel M, Ahmad MA, Zhang P, Rizwan M, Rui Y. Editorial to special issue on New Avenues in application of nanotechnology for sustainable. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108432. [PMID: 38402075 DOI: 10.1016/j.plaphy.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Affiliation(s)
- Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China; Normal University at Zhuhai, Zhuhai, 519087, Guangdong, China.
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Ahmad MA, Adeel M, Shakoor N, Ali I, Ishfaq M, Haider FU, Deng X. Unraveling the roles of modified nanomaterials in nano enabled agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107944. [PMID: 37579682 DOI: 10.1016/j.plaphy.2023.107944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
Nanotechnology has emerged as a key empowering technology for agriculture production due to its higher efficiency and accurate target delivery. However, the sustainable and effective application of nanotechnology requires nanomaterials (NMs) to have higher stability and less aggregation/coagulation at the reaction sites. This can ideally be achieved by modifying NMs with some surfactants or capping agents to ensure higher efficiency. These modified nanomaterials (MNMs) stabilize the interface where NMs interact with their medium of preparation and showed a significant improvement in mobility, reactivity, and controlled release of active ingredients for nano-enabled agriculture. Several environmental factors (e.g., pH, organic matter and the oxidation-reduction potential) could alter the interaction of MNMs with agricultural plants. Firstly, this novel review article introduces production technologies and a few frequently used modification agents in synthesizing MNMs. Next, we critically elaborate the leveraging progress in the modified nano-enabled agronomy and unveil their phytoremediation potential. Lastly, we propose a framework to overcome current challenges and develop a strategy for safe, effective and acceptable applications of MNMs in nano-enabled agriculture. However, the long-term effectiveness and reactivity of MNMs should be investigated to assess their technology effectiveness and optimize the process design to draw definite conclusions.
Collapse
Affiliation(s)
- Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Tangjiawan, Zhuhai, Guangdong, China.
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ilyas Ali
- Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ishfaq
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, Beijing, China
| | - Fasih Ullah Haider
- China Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|