1
|
Rivard N, Humbert M, Huguet KT, Fauconnier A, Bucio CP, Quirion E, Burrus V. Surface exclusion of IncC conjugative plasmids and their relatives. PLoS Genet 2024; 20:e1011442. [PMID: 39383195 PMCID: PMC11493245 DOI: 10.1371/journal.pgen.1011442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The phenomenon of exclusion allows conjugative plasmids to selectively impede the entry of identical or related elements into their host cell to prevent the resulting instability. Entry exclusion blocks DNA translocation into the recipient cell, whereas surface exclusion destabilizes the mating pair. IncC conjugative plasmids largely contribute to the dissemination of antibiotic-resistance genes in Gammaproteobacteria. IncC plasmids are known to exert exclusion against their relatives, including IncC and IncA plasmids, yet the entry exclusion factor eexC alone does not account for the totality of the exclusion phenotype. In this study, a transposon-directed insertion sequencing approach identified sfx as necessary and sufficient for the remaining exclusion phenotype. Sfx is an exclusion factor unrelated to the ones described to date. A cell fractionation assay localized Sfx in the outer membrane. Reverse transcription PCR and beta-galactosidase experiments showed that sfx is expressed constitutively at a higher level than eexC. A search in Gammaproteobacteria genomes identified Sfx homologs encoded by IncC, IncA and related, untyped conjugative plasmids and an uncharacterized family of integrative and mobilizable elements that likely rely on IncC plasmids for their mobility. Mating assays demonstrated that sfx is not required in the donor for exclusion, ruling out Sfx as the exclusion target. Instead, complementation assays revealed that the putative adhesin TraN in the donor mediates the specificity of surface exclusion. Mating assays with TraN homologs from related untyped plasmids from Aeromonas spp. and Photobacterium damselae identified two surface exclusion groups, with each Sfx being specific of TraN homologs from the same group. Together, these results allow us to better understand the apparent incompatibility between IncA and IncC plasmids and to propose a mechanistic model for surface exclusion mediated by Sfx in IncC plasmids and related elements, with implications for the rampant dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Nicolas Rivard
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Malika Humbert
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kévin T Huguet
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Aurélien Fauconnier
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - César Pérez Bucio
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León, Mexico
| | - Eve Quirion
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
A novel plasmid entry exclusion system in pKPC_UVA01, a promiscuous conjugative plasmid carrying the
bla
KPC
carbapenemase gene. Antimicrob Agents Chemother 2022; 66:e0232221. [PMID: 35007138 PMCID: PMC8923210 DOI: 10.1128/aac.02322-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative plasmids are the principal mediator in the emergence and spread of antibiotic resistance genes in Enterobacterales. Plasmid entry exclusion (EEX) systems can restrict their transfer into the recipient bacteria carrying closely related plasmids. In this study, we identified and characterized a novel plasmid entry exclusion system in a carbapenem resistance plasmid pKPC_UVA01, which is responsible for widespread dissemination of the blaKPC carbapenemase gene among Enterobacterales in the United States. The identified eex gene in the recipient strain of different Enterobacterales species inhibited the conjugation transfer of pKPC_UVA01 plasmids at a range of 200- to 400-fold, and this inhibition was found to be a dose-dependent function of the EEX protein in recipient cells. The C terminus truncated version of eex or eex with an early termination codon at the C terminus region alleviated the inhibition of conjugative transfer. Unlike the strict specificity of plasmid exclusion by the known EEX protein, the newly identified EEX in the recipient strain could inhibit the transfer of IncP and IncN plasmids. The eex gene from the plasmid pKPC_UVA01 was not required for conjugative transfer but was essential in the donor bacteria for entry exclusion of this plasmid. This was a novel function of a single protein that is essential in both donor and recipient bacteria for the entry exclusion of a plasmid. This eex gene is found to be distributed in multidrug resistance plasmids similar to pKPC_UVA01 in different Enterobacterales species and may contribute to the stability of this plasmid type by controlling its transfer.
Collapse
|
3
|
Specificity and Selective Advantage of an Exclusion System in the Integrative and Conjugative Element ICE Bs1 of Bacillus subtilis. J Bacteriol 2021; 203:JB.00700-20. [PMID: 33649151 DOI: 10.1128/jb.00700-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements capable of transferring their own and other DNA. They contribute to the spread of antibiotic resistance and other important traits for bacterial evolution. Exclusion is a mechanism used by many conjugative plasmids and a few ICEs to prevent their host cell from acquiring a second copy of the cognate element. ICEBs1 of Bacillus subtilis has an exclusion mechanism whereby the exclusion protein YddJ in a potential recipient inhibits the activity of the ICEBs1-encoded conjugation machinery in a potential donor. The target of YddJ-mediated exclusion is the conjugation protein ConG (a VirB6 homolog). Here, we defined the regions of YddJ and ConG that confer exclusion specificity and determined the importance of exclusion to host cells. Using chimeras that had parts of ConG from ICEBs1 and the closely related ICEBat1, we identified a putative extracellular loop of ConG that conferred specificity for exclusion by the cognate YddJ. Using chimeras of YddJ from ICEBs1 and ICEBat1, we identified two regions in YddJ needed for exclusion specificity. We also found that YddJ-mediated exclusion reduced the death of donor cells following conjugation into recipients. Donor death was dependent on the ability of transconjugants to themselves become donors and was reduced under osmoprotective conditions, indicating that death was likely due to alterations in the donor cell envelope caused by excessive conjugation. We postulate that elements that can have high frequencies of transfer likely evolved exclusion mechanisms to protect the host cells from excessive death.IMPORTANCE Horizontal gene transfer is a driving force in bacterial evolution, responsible for the spread of many traits, including antibiotic and heavy metal resistance. Conjugation, one type of horizontal gene transfer, involves DNA transfer from donor to recipient cells through conjugation machinery and direct cell-cell contact. Exclusion mechanisms allow conjugative elements to prevent their host from acquiring additional copies of the element and are highly specific, enabling hosts to acquire heterologous elements. We defined regions of the exclusion protein and its target in the conjugation machinery that convey high specificity of exclusion. We found that exclusion protects donors from cell death during periods of high transfer. This is likely important for the element to enter new populations of cells.
Collapse
|
4
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
5
|
Avello M, Davis KP, Grossman AD. Identification, characterization and benefits of an exclusion system in an integrative and conjugative element of Bacillus subtilis. Mol Microbiol 2019; 112:1066-1082. [PMID: 31361051 PMCID: PMC6827876 DOI: 10.1111/mmi.14359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements that transfer from cell to cell by conjugation (like plasmids) and integrate into the chromosomes of bacterial hosts (like lysogenic phages or transposons). ICEs are prevalent in bacterial chromosomes and play a major role in bacterial evolution by promoting horizontal gene transfer. Exclusion prevents the redundant transfer of conjugative elements into host cells that already contain a copy of the element. Exclusion has been characterized mostly for conjugative elements of Gram-negative bacteria. Here, we report the identification and characterization of an exclusion mechanism in ICEBs1 from the Gram-positive bacterium Bacillus subtilis. We found that cells containing ICEBs1 inhibit the activity of the ICEBs1-encoded conjugation machinery in other cells. This inhibition (exclusion) was specific to the cognate conjugation machinery and the ICEBs1 gene yddJ was both necessary and sufficient to mediate exclusion by recipient cells. Through a mutagenesis and enrichment screen, we identified exclusion-resistant mutations in the ICEBs1 gene conG. Using genes from a heterologous but related ICE, we found that the exclusion specificity was determined by ConG and YddJ. Finally, we found that under conditions that support conjugation, exclusion provides a selective advantage to the element and its host cells.
Collapse
Affiliation(s)
| | | | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
6
|
Entry Exclusion of Conjugative Plasmids of the IncA, IncC, and Related Untyped Incompatibility Groups. J Bacteriol 2019; 201:JB.00731-18. [PMID: 30858294 DOI: 10.1128/jb.00731-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Conjugative plasmids of incompatibility group C (IncC), formerly known as A/C2, disseminate antibiotic resistance genes globally in diverse pathogenic species of Gammaproteobacteria. Salmonella genomic island 1 (SGI1) can be mobilized by IncC plasmids and was recently shown to reshape the conjugative type IV secretion system (T4SS) encoded by these plasmids to evade entry exclusion. Entry exclusion blocks DNA translocation between cells containing identical or highly similar plasmids. Here, we report that the protein encoded by the entry exclusion gene of IncC plasmids (eexC) mediates entry exclusion in recipient cells through recognition of the IncC-encoded TraGC protein in donor cells. Phylogenetic analyses based on EexC and TraGC homologs predicted the existence of at least three different exclusion groups among IncC-related conjugative plasmids. Mating assays using Eex proteins encoded by representative IncC and IncA (former A/C1) and related untyped plasmids confirmed these predictions and showed that the IncC and IncA plasmids belong to the C exclusion group, thereby explaining their apparent incompatibility despite their compatible replicons. Representatives of the two other exclusion groups (D and E) are untyped conjugative plasmids found in Aeromonas sp. Finally, we determined through domain swapping that the carboxyl terminus of the EexC and EexE proteins controls the specificity of these exclusion groups. Together, these results unravel the role of entry exclusion in the apparent incompatibility between IncA and IncC plasmids while shedding light on the importance of the TraG subunit substitution used by SGI1 to evade entry exclusion.IMPORTANCE IncA and IncC conjugative plasmids drive antibiotic resistance dissemination among several pathogenic species of Gammaproteobacteria due to the diversity of drug resistance genes that they carry and their ability to mobilize antibiotic resistance-conferring genomic islands such as SGI1 of Salmonella enterica While historically grouped as "IncA/C," IncA and IncC replicons were recently confirmed to be compatible and to abolish each other's entry into the cell in which they reside during conjugative transfer. The significance of our study is in identifying an entry exclusion system that is shared by IncA and IncC plasmids. It impedes DNA transfer to recipient cells bearing a plasmid of either incompatibility group. The entry exclusion protein of this system is unrelated to any other known entry exclusion proteins.
Collapse
|
7
|
Hong TP, Carter MQ, Struffi P, Casonato S, Hao Y, Lam JS, Lory S, Jousson O. Conjugative type IVb pilus recognizes lipopolysaccharide of recipient cells to initiate PAPI-1 pathogenicity island transfer in Pseudomonas aeruginosa. BMC Microbiol 2017; 17:31. [PMID: 28173753 PMCID: PMC5297154 DOI: 10.1186/s12866-017-0943-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/03/2017] [Indexed: 12/31/2022] Open
Abstract
Background Pseudomonas aeruginosa pathogenicity island 1 (PAPI-1) is one of the largest genomic islands of this important opportunistic human pathogen. Previous studies have shown that PAPI-1 encodes several putative virulence factors, including a major regulator of biofilm formation and antibiotic-resistance traits. PAPI-1 is horizontally transferable into recipient strains lacking this island via conjugation mediated by the specialized type IV pilus. The PAPI-1 encodes a cluster of ten genes associated with the synthesis and assembly of the type IV pilus. The PAPI-1 acquisition mechanism is currently not well understood. Results In this study, we performed a series of conjugation experiments and identified determinants of PAPI-1 acquisition by analyzing transfer efficiency between the donor and a series of mutant recipient strains. Our data show that common polysaccharide antigen (CPA) lipopolysaccharide (LPS), a homopolymer of D-rhamnose, is required for initiating PAPI-1 transfer, suggesting that this structure acts as a receptor for conjugative type IV pilus in recipient strains. These results were substantiated by experimental evidence from PAPI-1 transfer assay experiments, in which outer membrane or LPS preparations from well-defined LPS mutants were added to the transfer mix to assess the role of P. aeruginosa LPS in PAPI-1 transfer and in vitro binding experiments between pilin fusion protein GST-pilV2’ and immobilized LPS molecules were performed. Our data also showed that P. aeruginosa strains that had already acquired a copy of PAPI-1 were unable to import additional copies of the island, and that such strains produced proportionally lower amounts of CPA LPS compared to the strains lacking PAPI-1. Conclusions These results suggest that a PAPI-1 exclusion mechanism exists in P. aeruginosa that might serve to regulate the avoidance of uncontrolled expansions of the bacterial genome. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0943-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toan Phuoc Hong
- Centre for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Michelle Q Carter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Paolo Struffi
- Centre for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Stefano Casonato
- Centre for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Youai Hao
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, 38123, Trento, Italy.
| |
Collapse
|
8
|
Gibert M, Paytubi S, Beltrán S, Juárez A, Balsalobre C, Madrid C. Growth phase-dependent control of R27 conjugation is mediated by the interplay between the plasmid-encoded regulatory circuit TrhR/TrhY-HtdA and the cAMP regulon. Environ Microbiol 2016; 18:5277-5287. [PMID: 27768816 DOI: 10.1111/1462-2920.13579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 10/14/2016] [Indexed: 01/06/2023]
Abstract
Plasmids of the incompatibility group HI1 (IncHI1) have been isolated from several Gram-negative pathogens and are associated with the spread of multidrug resistance. Their conjugation is tightly regulated and it is inhibited at temperatures higher than 30°C, indicating that conjugation occurs outside warm-blooded hosts. Using R27, the prototype of IncHI1 plasmids, we report that plasmid transfer efficiency in E. coli strongly depends on the physiological state of the donor cells. Conjugation frequency is high when cells are actively growing, dropping sharply when cells enter the stationary phase of growth. Accordingly, our transcriptomic assays show significant downregulation of numerous R27 genes during the stationary phase, including several tra (transfer) genes. Growth phase-dependent regulation of tra genes transcription is independent of H-NS, a silencer of horizontal gene transfer, and ppGpp and RpoS, regulators of the stationary phase, but highly dependent on the plasmid-encoded regulatory circuit TrhR/TrhY-HtdA. The metabolic sensor cAMP, whose synthesis is chromosomally encoded, is also involved in the growth phase regulation of R27 conjugation by modulating htdA expression. Our data suggest that the involvement of regulators encoded by both chromosome and plasmid are required for efficient physiological control of IncHI1 plasmid conjugation.
Collapse
Affiliation(s)
- Marta Gibert
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Sonia Paytubi
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Sergi Beltrán
- Centre Nacional d'Anàlisi Genòmica (CNAG), Parc Científic de Barcelona, Baldiri Reixac 4, Barcelona, 08028, Spain
| | - Antonio Juárez
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain.,Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de Barcelona, Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Carlos Balsalobre
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| |
Collapse
|
9
|
Sakuma T, Tazumi S, Furuya N, Komano T. ExcA proteins of IncI1 plasmid R64 and IncIγ plasmid R621a recognize different segments of their cognate TraY proteins in entry exclusion. Plasmid 2012. [PMID: 23201046 DOI: 10.1016/j.plasmid.2012.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Entry exclusion is a process whereby plasmid transfer between donor and recipient cells harboring identical or closely related conjugative plasmids is inhibited. Exclusion proteins in the recipient cells are responsible for entry exclusion. Although IncI1 Plasmid R64 and IncIγ plasmid R621a exhibit similar genome structure in replication, transfer, and leading regions, they belong to different incompatibility and exclusion groups. The amino acid sequences of TraY and ExcA proteins are significantly different between R64 and R621a. In the present study, TraY proteins of R64 and R621a were exchanged. Transfer of R64 derivative carrying R621a TraY was inhibited by recipient R621a ExcA but not R64 ExcA and transfer of R621a derivative carrying R64 TraY was inhibited by recipient R64 ExcA but not R621a ExcA. This indicates that R64 and R621a TraY proteins in the donor cells are the targets of cognate ExcA proteins in the recipient proteins. Since two segments, an internal and a C-terminal segment, were found to vary between R64 and R621a TraY proteins, various chimera TraY proteins were constructed. Conjugation experiments suggested that the R64 internal variable segment recognizes R64 ExcA protein and the R621a C-terminal variable segment recognizes R621a ExcA protein.
Collapse
Affiliation(s)
- Takahiro Sakuma
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
10
|
Garcillán-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids? Plasmid 2008; 60:1-18. [DOI: 10.1016/j.plasmid.2008.03.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/15/2022]
|