1
|
Plasmid gene for putative integral membrane protein affects formation of lipopolysaccharide and motility in Azospirillum brasilense Sp245. Folia Microbiol (Praha) 2020; 65:963-972. [PMID: 32607666 DOI: 10.1007/s12223-020-00805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
The bacterium Azospirillum brasilense can swim and swarm owing to the work of polar and lateral flagella. Its major surface glycopolymers consist of lipopolysaccharides (LPS) and Calcofluor-binding polysaccharides (Cal+ phenotype). Motility and surface glycopolymers are important for the interactions of plant-associated bacteria with plants. The facultative plant endophyte A. brasilense Sp245 produces two antigenically different LPS, LpsI, and LpsII, containing identical O-polysaccharides. Previously, using vector pJFF350 for random Omegon-Km mutagenesis, we constructed a mutant of Sp245 named KM018 that still possessed flagella, although paralyzed. The mutant was no longer able to produce Calcofluor-binding polysaccharides and LpsII. Because of the limited experimental data on the genetic aspects of surface glycopolymer production and flagellar motility in azospirilla, the aim of this study was to identify and examine in more detail the coding sequence of strain Sp245, inactivated in the mutant. We found that pJFF350 was integrated into a coding sequence for a putative integral membrane protein of unknown function (AZOBR_p60025) located in the sixth plasmid of Sp245. To clarify the role of the putative protein, we cloned AZOBR_p60025 in the expression vector pRK415 and used it for the genetic complementation of mutant KM018. The SDS-PAGE, immunodiffusion, and linear immunoelectrophoresis analyses showed that in strain KM018 (pRK415-p60025), the wild-type LpsI+ LpsII+ profile was restored. The complemented mutant had a Cal+ phenotype and it was capable of swimming and swarming motility. Thus, the AZOBR_p60025-encoded protein significantly affects the composition of the major cell-surface glycopolymers and the single-cell and social motility of azospirilla.
Collapse
|
2
|
Turkovskaya OV, Golubev SN. The Collection of Rhizosphere Microorganisms: its importance for the study of associative plant-bacterium interactions. Vavilovskii Zhurnal Genet Selektsii 2020; 24:315-324. [PMID: 33659814 PMCID: PMC7716537 DOI: 10.18699/vj20.623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microbial culture collections are very important components of biological science. They provide researchers with material for studies and preserve biological resources. One such collection is the Collection of Rhizosphere Microorganisms, kept at the Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov (IBPPM). Its activity is primarily directed toward the isolation and preservation of microorganisms from the plant root zone. The international research interest in microorganisms from this ecological niche is not waning, because they are very important for plant growth and development and, consequently, for plant breeding. The group of bacteria with properties of significance for plants has been given the name "plant-growth-promoting rhizobacteria" (PGPR). This group includes nitrogen-fixing soil alpha-proteobacteria of the genus Azospirillum, which form the core of the IBPPM collection. First discovered by Brazilian scientists in the 1970s, azospirilla are now a universally recognized model object for studying the molecular mechanisms underlying plant-bacterium interactions. The broad range of useful properties found in these microorganisms, including the fixation of atmospheric nitrogen, production of phytohormones, solubilization of phosphates, control of pathogens, and formation of induced systemic resistance in the colonized plants, make these bacteria an all-purpose tool that has been used for several decades in basic and applied research. This article reviews the current state of Azospirillum research, with emphasis on the results obtained at the IBPPM. Scientific expeditions across the Saratov region undertaken by IBPPM microbiologists in the early 1980s formed the basis for the unique collection of members of this bacterial taxon. Currently, the collection has more than 160 Azospirillum strains and is one of the largest collections in Europe. The research conducted at the IBPPM is centered mostly on the Azospirillum structures involved in associative symbiosis with plants, primarily extracellular polysaccharide-containing complexes and lectins. The development of immunochemical methods contributed much to our understanding of the overall organization of the surface of rhizosphere bacteria. The extensive studies of the Azospirillum genome largely deepened our understanding of the role of the aforesaid bacterial structures, motility, and biofilms in the colonization of host plant roots. Of interest are also applied studies focusing on agricultural and environmental technologies and on the "green" synthesis of Au, Ag, and Se nanoparticles. The Collection of Rhizosphere Microorganisms continues to grow, being continually supplemented with newly isolated strains. The data presented in this article show the great importance of specialized microbial culture repositories, such as the IBPPM collection, for the development and maintenance of the microbial research base and for the effective solution of basic and applied tasks in microbiology.
Collapse
Affiliation(s)
- O V Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov, Russia
| | - S N Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
3
|
Petrova LP, Yevstigneyeva SS, Borisov IV, Shelud'ko AV, Burygin GL, Katsy EI. Plasmid gene AZOBR_p60126 impacts biosynthesis of lipopolysaccharide II and swarming motility in Azospirillum brasilense Sp245. J Basic Microbiol 2020; 60:613-623. [PMID: 32378235 DOI: 10.1002/jobm.201900635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
The facultative plant endophyte Azospirillum brasilense Sp245 synthesizes two high-molecular-weight lipopolysaccharides, LPSI and LPSII, which comprise identical d-rhamnan O-polysaccharides and, presumably different core oligosaccharides. Previously, using random insertion mutagenesis, we constructed the LpsII- mutant KM139 of strain Sp245 that possessed an Omegon-Km insertion in plasmid AZOBR_p6. Here, we found that in KM139, Omegon-Km disrupted the coding sequence AZOBR_p60126 for a putative glycosyltransferase related to mannosyltransferases and rhamnosyltransferases. To verify its function, we cloned the AZOBR_p60126 gene of strain Sp245 in the expression vector plasmid pRK415 and transferred the construct pRK415-p60126 into KM139. In the complemented mutant KM139 (pRK415-p60126), the wild-type LPSI+ LPSII+ profile was recovered. We also compared the swimming and swarming motilities of strains Sp245, Sp245 (pRK415), KM139, KM139 (pRK415), and KM139 (pRK415-p60126). All these strains had the same flagellar-dependent swimming speeds, but on soft media, the LpsI+ LpsII- strains KM139 and KM139 (pRK415) swarmed significantly faster than the other LpsI+ LpsII+ strains. Such interstrain differences in swarming motility were more pronounced on 0.4% than on 0.5% soft agar plates. These data show that the AZOBR_p60126-encoded putative glycosyltransferase significantly affects the lipopolysaccharide profile and, as a consequence, the social motility of azospirilla.
Collapse
Affiliation(s)
- Lilia P Petrova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Stella S Yevstigneyeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Igor V Borisov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Andrei V Shelud'ko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Elena I Katsy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
4
|
Jang J, Sakai Y, Senoo K, Ishii S. Potentially Mobile Denitrification Genes Identified in Azospirillum sp. Strain TSH58. Appl Environ Microbiol 2019; 85:e02474-18. [PMID: 30413471 PMCID: PMC6328785 DOI: 10.1128/aem.02474-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
Denitrification ability is sporadically distributed among diverse bacteria, archaea, and fungi. In addition, disagreement has been found between denitrification gene phylogenies and the 16S rRNA gene phylogeny. These facts have suggested potential occurrences of horizontal gene transfer (HGT) for the denitrification genes. However, evidence of HGT has not been clearly presented thus far. In this study, we identified the sequences and the localization of the nitrite reductase genes in the genomes of 41 denitrifying Azospirillum sp. strains and searched for mobile genetic elements that contain denitrification genes. All Azospirillum sp. strains examined in this study possessed multiple replicons (4 to 11 replicons), with their sizes ranging from 7 to 1,031 kbp. Among those, the nitrite reductase gene nirK was located on large replicons (549 to 941 kbp). Genome sequencing showed that Azospirillum strains that had similar nirK sequences also shared similar nir-nor gene arrangements, especially between the TSH58, Sp7T, and Sp245 strains. In addition to the high similarity between nir-nor gene clusters among the three Azospirillum strains, a composite transposon structure was identified in the genome of strain TSH58, which contains the nir-nor gene cluster and the novel IS6 family insertion sequences (ISAz581 and ISAz582). The nirK gene within the composite transposon system was actively transcribed under denitrification-inducing conditions. Although not experimentally verified in this study, the composite transposon system containing the nir-nor gene cluster could be transferred to other cells if it is moved to a prophage region and the phage becomes activated and released outside the cells. Taken together, strain TSH58 most likely acquired its denitrification ability by HGT from closely related Azospirillum sp. denitrifiers.IMPORTANCE The evolutionary history of denitrification is complex. While the occurrence of horizontal gene transfer has been suggested for denitrification genes, most studies report circumstantial evidences, such as disagreement between denitrification gene phylogenies and the 16S rRNA gene phylogeny. Based on the comparative genome analyses of Azospirillum sp. denitrifiers, we identified denitrification genes, including nirK and norCBQD, located on a mobile genetic element in the genome of Azospirillum sp. strain TSH58. The nirK was actively transcribed under denitrification-inducing conditions. Since this gene was the sole nitrite reductase gene in strain TSH58, this strain most likely benefitted by acquiring denitrification genes via horizontal gene transfer. This finding will significantly advance our scientific knowledge regarding the ecology and evolution of denitrification.
Collapse
Affiliation(s)
- Jeonghwan Jang
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Yoriko Sakai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
5
|
Microscopic and proteomic analysis of Zea mays roots (P30F53 variety) inoculated with Azospirillum brasilense strain FP2. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s12892-014-0061-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Katsy EI, Prilipov AG. Insertional mutation in the AZOBR_p60120 gene is accompanied by defects in the synthesis of lipopolysaccharide and calcofluor-binding polysaccharides in the bacterium Azospirillum brasilense Sp245. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415030059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kovtunov EA, Shelud’ko AV, Chernyshova MP, Petrova LP, Katsy EI. Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413110112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kovtunov EA, Petrova LP, Shelud’ko AV, Katsy EI. Transposon insertion into a chromosomal copy of flhB gene is concurrent with defects in the formation of polar and lateral flagella in the bacterium Azospirillum brasilense Sp245. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413080061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Tanaka KH, Dallaire-Dufresne S, Daher RK, Frenette M, Charette SJ. An insertion sequence-dependent plasmid rearrangement in Aeromonas salmonicida causes the loss of the type three secretion system. PLoS One 2012; 7:e33725. [PMID: 22432045 PMCID: PMC3303853 DOI: 10.1371/journal.pone.0033725] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
Aeromonas salmonicida, a bacterial fish pathogen, possesses a functional Type Three Secretion System (TTSS), which is essential for its virulence. The genes for this system are mainly located in a single region of the large pAsa5 plasmid. Bacteria lose the TTSS region from this plasmid through rearrangements when grown in stressful growth conditions. The A. salmonicida genome is rich in insertion sequences (ISs), which are mobile DNA elements that can cause DNA rearrangements in other bacterial species. pAsa5 possesses numerous ISs. Three IS11s from the IS256 family encircle the rearranged regions. To confirm that these IS11s are involved in pAsa5 rearrangements, 26 strains derived from strain A449 and two Canadian isolates (01-B526 and 01-B516) with a pAsa5 rearrangement were tested using a PCR approach to determine whether the rearrangements were the result of an IS11-dependent process. Nine out of the 26 strains had a positive PCR result, suggesting that the rearrangement in these strains were IS-dependent. The PCR analysis showed that all the rearrangements in the A449-derived strains were IS11-dependent process while the rearrangements in 01-B526 and 01-B516 could only be partially coupled to the action of IS11. Unidentified elements that affect IS-dependent rearrangements may be present in 01-B526 and 01-B516. Our results suggested that pAsa5 rearrangements involve IS11. This is the first study showing that ISs are involved in plasmid instability in A. salmonicida.
Collapse
Affiliation(s)
- Katherine H. Tanaka
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Stéphanie Dallaire-Dufresne
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Rana K. Daher
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Michel Frenette
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Quebec, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de médecine dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Steve J. Charette
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
10
|
Kovtunov EA, Shelud’ko AV, Katsy EI. Alterations in the primary structure of an 85-MDa plasmid affecting flagellation and motility in the bacterium Azospirillum brasilense Sp245. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412010115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Effect of genomic rearrangement on heavy metal tolerance in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Folia Microbiol (Praha) 2011; 57:5-10. [DOI: 10.1007/s12223-011-0074-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/02/2011] [Indexed: 10/15/2022]
|
12
|
Petrova LP, Varshalomidze OE, Shelud’ko AV, Katsy EI. Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410070045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|