1
|
Farkas E, McKay GA, Hu LT, Nekouei M, Ho P, Moreira W, Chan CC, Dam LC, Auclair K, Gruenheid S, Whyte L, Dedon P, Nguyen D. Bioluminescent Pseudomonas aeruginosa and Escherichia coli for whole-cell screening of antibacterial and adjuvant compounds. Sci Rep 2024; 14:31039. [PMID: 39730767 DOI: 10.1038/s41598-024-81926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Continued efforts to discover new antibacterial molecules are critical to achieve a robust pre-clinical pipeline for new antibiotics. Screening of compound or natural product extract libraries remains a widespread approach and can benefit from the development of whole cell assays that are robust, simple and versatile, and allow for high throughput testing of antibacterial activity. In this study, we created and validated two bioluminescent reporter strains for high-throughput screening, one in Pseudomonas aeruginosa, and another in a hyperporinated and efflux-deficient Escherichia coli. We show that the bioluminescent strains have a large dynamic range that closely correlates with cell viability and is superior to conventional optical density (OD600) measurements, can detect dose-dependent antibacterial activity and be used for different drug discovery applications. We evaluated the assays' performance characteristics (signal to background ratio, signal window, Z' robust) and demonstrated their potential utility for antibiotic drug discovery in two examples. The P. aeruginosa bioluminescent reporter was used in a pilot screen of 960 repurposed compound libraries to identify adjuvants that potentiate the fluoroquinolone antibiotic ofloxacin. The E. coli bioluminescent reporter was used to test the antibacterial activity of bioactive bacterial supernatants and assist with bioassay-guided fractionation of the crude extracts.
Collapse
Affiliation(s)
- Eszter Farkas
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Geoffrey A McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Lin Tao Hu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Mina Nekouei
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Peying Ho
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Wilfried Moreira
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Singapore Centre for Environmental Life Science Engineering (SCELSE), Singapore, Singapore
| | - Chia Ching Chan
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Linh Chi Dam
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Peter Dedon
- Antimicrobial Resistance Interdisciplinary Research Group (AMR IRG), Singapore- Massachusetts Institute of Technology Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dao Nguyen
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
The influence of CsgD on the expression of genes of folate metabolism and hmp in Escherichia coli K-12. Arch Microbiol 2013; 195:559-69. [PMID: 23824318 DOI: 10.1007/s00203-013-0909-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/04/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The csgD gene codes for the regulatory protein CsgD. CsgD upregulates the synthesis of the adhesive fimbriae, curli, that are important for biofilm formation and downregulates flagellar synthesis. We compared the expression of genes involved in folate metabolism and a gene (hmp) in strains with an intact csgD gene and with a deletion in csgD. The hmp gene codes a flavohemoglobin that inactivates nitric oxide. Expression was monitored by measuring light production from single copy lux operon fusions. At late times of growth, expression of genes responsible for methylene tetrahydrofolate synthesis (glyA and gcvTHP) and formyltetrahydrofolate recycling (purU) was higher in cells with CsgD than those without. In contrast, expression of hmp was lower in the presence of CsgD throughout the period monitored. We used a novel defined medium which should assist in defining nutritional factors that contribute to curli formation.
Collapse
|
3
|
Atosuo J, Lehtinen J, Vojtek L, Lilius EM. Escherichia coli K-12 (pEGFPluxABCDEamp): a tool for analysis of bacterial killing by antibacterial agents and human complement activities on a real-time basis. LUMINESCENCE 2012; 28:771-9. [PMID: 23129448 DOI: 10.1002/bio.2435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 11/08/2022]
Abstract
Photorhabdus luminescens luxCDABE genes were integrated into E. coli K-12 using a high copy number plasmid containing modified luxABCDE genes under the control of the powerful Lac promoter. This strain emitted 10 times higher bioluminescence (BL) than P. luminescens. BL production under different growth conditions was studied. In both bacterial strains, the increase in BL signal correlated with the increase in optical density (OD) in a rich growth medium. However, at the logarithmic growth phase, the BL signal was roughly constant. By contrast, in minimal growth media, there was no substantial growth and the BL/cell was approximately five times higher than in the rich medium. The dynamic measurement range of BL was 10(2) -10(7) colony-forming units (CFU) in E. coli and 10(3) -10(7) CFU in P. luminescens. Because the decrease in the BL signal correlated with the decrease in CFU and OD, i.e. the number of bacterial cells killed, it proved to be very suitable for assessing the antibacterial effects of different antimicrobial agents. Unlike with plate counting, the kinetics of killing can be monitored on a real-time basis using BL measurements. Complement activities in different samples can be estimated using only one serum dilution. The transformed E. coli strain appeared to be superior to P. luminescens in these applications because E. coli was complement sensitive, the detection limit of E. coli was one order lower and the BL-producing system of P. luminescens appeared to be quite unstable.
Collapse
Affiliation(s)
- Janne Atosuo
- Department of Biochemistry and Food Chemistry, The University of Turku, Turku, Finland
| | | | | | | |
Collapse
|