1
|
Kothapalli R, Ghirlando R, Khan ZA, Chatterjee S, Kedei N, Chattoraj D. The dimerization interface of initiator RctB governs chaperone and enhancer dependence of Vibrio cholerae chromosome 2 replication. Nucleic Acids Res 2022; 50:4529-4544. [PMID: 35390166 PMCID: PMC9071482 DOI: 10.1093/nar/gkac210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/13/2022] Open
Abstract
Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.
Collapse
Affiliation(s)
- Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Zaki Ali Khan
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Fournes F, Val ME, Skovgaard O, Mazel D. Replicate Once Per Cell Cycle: Replication Control of Secondary Chromosomes. Front Microbiol 2018; 9:1833. [PMID: 30131796 PMCID: PMC6090056 DOI: 10.3389/fmicb.2018.01833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Faithful vertical transmission of genetic information, especially of essential core genes, is a prerequisite for bacterial survival. Hence, replication of all the replicons is tightly controlled to ensure that all daughter cells get the same genome copy as their mother cell. Essential core genes are very often carried by the main chromosome. However they can occasionally be found on secondary chromosomes, recently renamed chromids. Chromids have evolved from non-essential megaplasmids, and further acquired essential core genes and a genomic signature closed to that of the main chromosome. All chromids carry a plasmidic replication origin, belonging so far to either the iterons or repABC type. Based on these differences, two categories of chromids have been distinguished. In this review, we focus on the replication initiation controls of these two types of chromids. We show that the sophisticated mechanisms controlling their replication evolved from their plasmid counterparts to allow a timely controlled replication, occurring once per cell cycle.
Collapse
Affiliation(s)
- Florian Fournes
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
3
|
Myka KK, McGlynn P, Ferguson GP. Insights into the initiation of chromosome II replication of the pressure-loving deep-sea bacterium Photobacterium profundum SS9. MICROBIOLOGY-SGM 2018; 164:920-933. [PMID: 29757128 DOI: 10.1099/mic.0.000663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
How DNA metabolism is adapted to survival of organisms such as the bacterium Photobacterium profundum SS9 at high pressure is unknown. Previously, a high pressure-sensitive P. profundum SS9 transposon mutant (FL31) was identified, with an insertion in a putative rctB gene. The Vibrio cholerae RctB protein is essential for replication initiation at the origin of chromosome II, oriCII. Using a plasmid-based system in E. coli we have identified the replication origin of chromosome II from P. profundum SS9 and have shown that the putative rctB gene, disrupted in FL31, is essential for oriCII function. Moreover, we found that a region corresponding to the V. cholerae oriCII incompatibility region (incII) exerts an inhibitory effect on P. profundum oriCII. The truncated rctB gene in FL31 confers insensitivity to incII inhibition, indicating that the C-terminus of RctB is important for the negative regulation of replication. The RctB proteins of V. cholerae and P. profundum are partially interchangeable, but full functionality is achieved only with the cognate origin. Our findings provide the first characterization of the replication origin of chromosome II in a deep-sea bacterium.
Collapse
Affiliation(s)
- Kamila K Myka
- Present address: Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter McGlynn
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,Present address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Gail P Ferguson
- School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
4
|
Kemter FS, Messerschmidt SJ, Schallopp N, Sobetzko P, Lang E, Bunk B, Spröer C, Teschler JK, Yildiz FH, Overmann J, Waldminghaus T. Synchronous termination of replication of the two chromosomes is an evolutionary selected feature in Vibrionaceae. PLoS Genet 2018; 14:e1007251. [PMID: 29505558 PMCID: PMC5854411 DOI: 10.1371/journal.pgen.1007251] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such that termination of chromosomal replication occurs in synchrony. We investigated these two models and revealed that the two chromosomes of various Vibrionaceae species terminate in synchrony while Chr2-initiation timing relative to Chr1 is variable. Moreover, the sequence and function of the Chr2-triggering crtS site recently discovered in V. cholerae were found to be conserved, explaining the observed timing mechanism. Our results suggest that it is beneficial for bacterial cells with multiple chromosomes to synchronize their replication termination, potentially to optimize chromosome related processes as dimer resolution or segregation.
Collapse
Affiliation(s)
- Franziska S. Kemter
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Sonja J. Messerschmidt
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Elke Lang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner Site Hannover–Braunschweig, Braunschweig, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
5
|
Orlova N, Gerding M, Ivashkiv O, Olinares PDB, Chait BT, Waldor MK, Jeruzalmi D. The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 2017; 45:3724-3737. [PMID: 28031373 PMCID: PMC5397143 DOI: 10.1093/nar/gkw1288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/18/2016] [Indexed: 01/23/2023] Open
Abstract
The conserved DnaA-oriC system is used to initiate replication of primary chromosomes throughout the bacterial kingdom; however, bacteria with multipartite genomes evolved distinct systems to initiate replication of secondary chromosomes. In the cholera pathogen, Vibrio cholerae, and in related species, secondary chromosome replication requires the RctB initiator protein. Here, we show that RctB consists of four domains. The structure of its central two domains resembles that of several plasmid replication initiators. RctB contains at least three DNA binding winged-helix-turn-helix motifs, and mutations within any of these severely compromise biological activity. In the structure, RctB adopts a head-to-head dimeric configuration that likely reflects the arrangement in solution. Therefore, major structural reorganization likely accompanies complex formation on the head-to-tail array of binding sites in oriCII. Our findings support the hypothesis that the second Vibrionaceae chromosome arose from an ancestral plasmid, and that RctB may have evolved additional regulatory features.
Collapse
Affiliation(s)
- Natalia Orlova
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA
| | - Matthew Gerding
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Olha Ivashkiv
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
| | - Paul Dominic B Olinares
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, NY 10021, USA
| | - Brian T Chait
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, NY 10021, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, NY 10016, USA.,Ph.D. Program in Biology, The Graduate Center of the City University of New York, NY 10016, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, NY 10016, USA
| |
Collapse
|
6
|
Jha JK, Li M, Ghirlando R, Miller Jenkins LM, Wlodawer A, Chattoraj D. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2. mBio 2017; 8:e00427-17. [PMID: 28420739 PMCID: PMC5395669 DOI: 10.1128/mbio.00427-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in rctB that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid-the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication of Vibrio cholerae Chr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that promotes initiation by reducing the initiator's propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mi Li
- Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland, USA
| | | | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA
| | - Dhruba Chattoraj
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Messerschmidt SJ, Schindler D, Zumkeller CM, Kemter FS, Schallopp N, Waldminghaus T. Optimization and Characterization of the Synthetic Secondary Chromosome synVicII in Escherichia coli. Front Bioeng Biotechnol 2016; 4:96. [PMID: 28066763 PMCID: PMC5179572 DOI: 10.3389/fbioe.2016.00096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/09/2016] [Indexed: 11/15/2022] Open
Abstract
Learning by building is one of the core ideas of synthetic biology research. Consequently, building synthetic chromosomes is the way to fully understand chromosome characteristics. The last years have seen exciting synthetic chromosome studies. We had previously introduced the synthetic secondary chromosome synVicII in Escherichia coli. It is based on the replication mechanism of the secondary chromosome in Vibrio cholerae. Here, we present a detailed analysis of its genetic characteristics and a selection approach to optimize replicon stability. We probe the origin diversity of secondary chromosomes from Vibrionaceae by construction of several new respective replicons. Finally, we present a synVicII version 2.0 with several innovations including its full compatibility with the popular modular cloning (MoClo) assembly system.
Collapse
Affiliation(s)
- Sonja J Messerschmidt
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Daniel Schindler
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Celine M Zumkeller
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Franziska S Kemter
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| |
Collapse
|
8
|
Random versus Cell Cycle-Regulated Replication Initiation in Bacteria: Insights from Studying Vibrio cholerae Chromosome 2. Microbiol Mol Biol Rev 2016; 81:81/1/e00033-16. [PMID: 27903655 DOI: 10.1128/mmbr.00033-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chromosomes initiate replication at a fixed time in the cell cycle, whereas there is generally no particular time for plasmid replication initiation or chromosomal replication initiation from integrated plasmids. In bacteria with divided genomes, the replication system of one of the chromosomes typically resembles that of bacteria with undivided genomes, whereas the remaining chromosomes have plasmid-like replication systems. For example, in Vibrio cholerae, a bacterium with two chromosomes (chromosome 1 [Chr1] and Chr2), the Chr1 system resembles that of the Escherichia coli chromosome, and the Chr2 system resembles that of iteron-based plasmids. However, Chr2 still initiates replication at a fixed time in the cell cycle and thus offers an opportunity to understand the molecular basis for the difference between random and cell cycle-regulated modes of replication. Here we review studies of replication control in Chr2 and compare it to those of plasmids and chromosomes. We argue that although the Chr2 control mechanisms in many ways are reminiscent of those of plasmids, they also appear to combine more regulatory features than are found on a typical plasmid, including some that are more typical of chromosomes. One of the regulatory mechanisms is especially novel, the coordinated timing of replication initiation of Chr1 and Chr2, providing the first example of communication between chromosomes for replication initiation.
Collapse
|
9
|
Val ME, Marbouty M, de Lemos Martins F, Kennedy SP, Kemble H, Bland MJ, Possoz C, Koszul R, Skovgaard O, Mazel D. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. SCIENCE ADVANCES 2016; 2:e1501914. [PMID: 27152358 PMCID: PMC4846446 DOI: 10.1126/sciadv.1501914] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 05/04/2023]
Abstract
Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication-mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria.
Collapse
Affiliation(s)
- Marie-Eve Val
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Martial Marbouty
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Francisco de Lemos Martins
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | | | - Harry Kemble
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Michael J. Bland
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Christophe Possoz
- Department of Genome Biology, Institute of Integrative Biology of the Cell (I2BC), Paris-Sud University, CEA, CNRS, Gif-sur-Yvette 91190, France
| | - Romain Koszul
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, Roskilde DK-4000, Denmark
- Corresponding author. E-mail: (D.M.); (O.S.)
| | - Didier Mazel
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
- Corresponding author. E-mail: (D.M.); (O.S.)
| |
Collapse
|
10
|
Val ME, Soler-Bistué A, Bland MJ, Mazel D. Management of multipartite genomes: the Vibrio cholerae model. Curr Opin Microbiol 2015; 22:120-6. [PMID: 25460805 DOI: 10.1016/j.mib.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
A minority of bacterial species has been found to carry a genome divided among several chromosomes. Among these, all Vibrio species harbor a genome split into two chromosomes of uneven size, with distinctive replication origins whose replication firing involves common and specific factors. Most of our current knowledge on replication and segregation in multi-chromosome bacteria has come from the study of Vibrio cholerae, which is now the model organism for this field. It has been firmly established that replication of the two V. cholerae chromosomes is temporally regulated and coupled to the cell cycle, but the mediators of these processes are as yet mostly unknown. The two chromosomes are also organized along different patterns within the cell and occupy different subcellular domains. The selective advantages provided by this partitioning into two replicons are still unclear and are a key motivation for these studies.
Collapse
Affiliation(s)
- Marie-Eve Val
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | | | | | | |
Collapse
|
11
|
Molecular Dissection of the Essential Features of the Origin of Replication of the Second Vibrio cholerae Chromosome. mBio 2015. [PMID: 26220967 PMCID: PMC4551981 DOI: 10.1128/mbio.00973-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vibrionaceae family members are interesting models for studying DNA replication initiation, as they contain two circular chromosomes. Chromosome II (chrII) replication is governed by two evolutionarily unique yet highly conserved elements, the origin DNA sequence oriCII and the initiator protein RctB. The minimum functional region of oriCII, oriCII-min, contains multiple elements that are bound by RctB in vitro, but little is known about the specific requirements for individual elements during oriCII initiation. We utilized undirected and site-specific mutagenesis to investigate the functionality of mutant forms of oriCII-min and assessed binding to various mutant forms by RctB. Our analyses showed that deletions, point mutations, and changes in RctB target site spacing or methylation all impaired oriCII-min-based replication. RctB displayed a reduced affinity for most of the low-efficacy origins tested, although its characteristic cooperative binding was generally maintained. Mutations that removed or altered the relative positions of origin components other than RctB binding sites (e.g., AT-rich sequence, DnaA target site) also abolished replicative capacity. Comprehensive mutagenesis and deep-sequencing-based screening (OriSeq) allowed the identification of a previously uncharacterized methylated domain in oriCII that is required for origin function. Together, our results reveal the remarkable evolutionary honing of oriCII and provide new insight into the complex interplay between RctB and oriCII. The genome of the enteric pathogen Vibrio cholerae consists of two chromosomes. While the chromosome I replication origin and its cognate replication initiator protein resemble those of Escherichia coli, the factors responsible for chromosome II replication initiation display no similarity to any other known initiation systems. Here, to enhance our understanding of how this DNA sequence, oriCII, and its initiator protein, RctB, function, we used both targeted mutagenesis and a new random-mutagenesis approach (OriSeq) to finely map the oriCII structural features and sequences required for RctB-mediated DNA replication. Collectively, our findings reveal the extraordinary evolutionary honing of the architecture and motifs that constitute oriCII and reveal a new role for methylation in oriCII-based replication. Finally, our findings suggest that the OriSeq approach is likely to be widely applicable for defining critical bases in cis-acting sequences.
Collapse
|
12
|
Messerschmidt SJ, Kemter FS, Schindler D, Waldminghaus T. Synthetic secondary chromosomes in Escherichia coli based on the replication origin of chromosome II in Vibrio cholerae. Biotechnol J 2014; 10:302-14. [PMID: 25359671 DOI: 10.1002/biot.201400031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 01/25/2023]
Abstract
Recent developments in DNA-assembly methods make the synthesis of synthetic chromosomes a reachable goal. However, the redesign of primary chromosomes bears high risks and still requires enormous resources. An alternative approach is the addition of synthetic chromosomes to the cell. The natural secondary chromosome of Vibrio cholerae could potentially serve as template for a synthetic secondary chromosome in Escherichia coli. To test this assumption we constructed a replicon named synVicII based on the replication module of V. cholerae chromosome II (oriII). A new assay for the assessment of replicon stability was developed based on flow-cytometric analysis of unstable GFP variants. Application of this assay to cells carrying synVicII revealed an improved stability compared to a secondary replicon based on E. coli oriC. Cell cycle analysis and determination of cellular copy numbers of synVicII indicate that replication timing of the synthetic replicon in E. coli is comparable to the natural chromosome II (ChrII) in V. cholerae. The presented synthetic biology work provides the basis to use secondary chromosomes in E. coli to answer basic research questions as well as for several biotechnological applications.
Collapse
Affiliation(s)
- Sonja J Messerschmidt
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
13
|
Jha JK, Ghirlando R, Chattoraj DK. Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2. Nucleic Acids Res 2014; 42:10538-49. [PMID: 25159619 PMCID: PMC4176361 DOI: 10.1093/nar/gku771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RctB, the initiator of replication of Vibrio cholerae chromosome 2 (chr2), binds to the origin of replication to specific 12-mer sites both as a monomer and a dimer. Binding to 12-mers is essential for initiation. The monomers also bind to a second kind of site, 39-mers, which inhibits initiation. Mutations in rctB that reduce dimer binding increase monomer binding to 12-mers but decrease monomer binding to 39-mers. The mechanism of this paradoxical binding behavior has been unclear. Using deletion and alanine substitution mutants of RctB, we have now localized to a 71 amino acid region residues important for binding to the two kinds of DNA sites and for RctB dimerization. We find that the dimerization domain overlaps with both the DNA binding domains, explaining how changes in the dimerization domain can alter both kinds of DNA binding. Moreover, dimerization-defective mutants could be initiation-defective without apparent DNA binding defect. These results suggest that dimerization might be important for initiation beyond its role in controlling DNA binding. The finding that determinants of crucial initiator functions reside in a small region makes the region an attractive target for anti-V. cholerae drugs.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Baek JH, Chattoraj DK. Chromosome I controls chromosome II replication in Vibrio cholerae. PLoS Genet 2014; 10:e1004184. [PMID: 24586205 PMCID: PMC3937223 DOI: 10.1371/journal.pgen.1004184] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Control of chromosome replication involves a common set of regulators in eukaryotes, whereas bacteria with divided genomes use chromosome-specific regulators. How bacterial chromosomes might communicate for replication is not known. In Vibrio cholerae, which has two chromosomes (chrI and chrII), replication initiation is controlled by DnaA in chrI and by RctB in chrII. DnaA has binding sites at the chrI origin of replication as well as outside the origin. RctB likewise binds at the chrII origin and, as shown here, to external sites. The binding to the external sites in chrII inhibits chrII replication. A new kind of site was found in chrI that enhances chrII replication. Consistent with its enhancing activity, the chrI site increased RctB binding to those chrII origin sites that stimulate replication and decreased binding to other sites that inhibit replication. The differential effect on binding suggests that the new site remodels RctB. The chaperone-like activity of the site is supported by the finding that it could relieve the dependence of chrII replication on chaperone proteins DnaJ and DnaK. The presence of a site in chrI that specifically controls chrII replication suggests a mechanism for communication between the two chromosomes for replication. Genome maintenance in dividing cells requires that the chromosomes replicate reliably once per cell cycle, and that this replication be timed to allow for proper segregation of the daughter chromosomes before cell division. In organisms with divided genomes, eukaryotes and a significant class of bacteria, the chromosomes must avoid interference with one another. They exhibit disciplined chromosome choreography, involving several regulators and control circuits that, even in the simplest organisms, are poorly understood. Here we examine the regulatory processes involved in maintaining the two chromosomes of the well-studied and medically important pathogen Vibrio cholerae. We provide evidence that a site in chromosome I can control the frequency and timing of replication of chromosome II. The mechanism involves a DNA-mediated remodeling of the chromosome II-specific initiator of replication by the chromosome I site. The site enhances the activity of the protein by differentially affecting its affinity for inhibitory and stimulatory sites on chromosome II. Our results provide the groundwork for determining whether coordination of replication might be a conserved feature that maintains chromosomes in proliferating cells of higher organisms.
Collapse
Affiliation(s)
- Jong Hwan Baek
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chao MC, Pritchard JR, Zhang YJ, Rubin EJ, Livny J, Davis BM, Waldor MK. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res 2013; 41:9033-48. [PMID: 23901011 PMCID: PMC3799429 DOI: 10.1093/nar/gkt654] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The coupling of high-density transposon mutagenesis to high-throughput DNA sequencing (transposon-insertion sequencing) enables simultaneous and genome-wide assessment of the contributions of individual loci to bacterial growth and survival. We have refined analysis of transposon-insertion sequencing data by normalizing for the effect of DNA replication on sequencing output and using a hidden Markov model (HMM)-based filter to exploit heretofore unappreciated information inherent in all transposon-insertion sequencing data sets. The HMM can smooth variations in read abundance and thereby reduce the effects of read noise, as well as permit fine scale mapping that is independent of genomic annotation and enable classification of loci into several functional categories (e.g. essential, domain essential or ‘sick’). We generated a high-resolution map of genomic loci (encompassing both intra- and intergenic sequences) that are required or beneficial for in vitro growth of the cholera pathogen, Vibrio cholerae. This work uncovered new metabolic and physiologic requirements for V. cholerae survival, and by combining transposon-insertion sequencing and transcriptomic data sets, we also identified several novel noncoding RNA species that contribute to V. cholerae growth. Our findings suggest that HMM-based approaches will enhance extraction of biological meaning from transposon-insertion sequencing genomic data.
Collapse
Affiliation(s)
- Michael C Chao
- Division of Infectious Disease, Brigham & Women's Hospital, Boston, MA 02115, USA, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA, Howard Hughes Medical Institute, Boston, MA 02115, USA, Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA and Genome Sequencing and Analysis Program, Broad Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|