1
|
Mejias J, Margets A, Bredow M, Foster J, Khwanbua E, Goshon J, Maier TR, Whitham SA, Innes RW, Baum TJ. A novel toolbox of GATEWAY-compatible vectors for rapid functional gene analysis in soybean composite plants. PLANT CELL REPORTS 2025; 44:72. [PMID: 40063264 DOI: 10.1007/s00299-025-03458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/17/2025] [Indexed: 04/12/2025]
Abstract
KEY MESSAGE We developed a set of GATEWAY vectors to accelerate gene function analysis in soybean composite plants to rapidly screen transgenic roots and investigate subcellular localization, protein-protein interactions, and root-pathogen interactions. The generation of transgenic plants is essential for plant biology research to investigate plant physiology, pathogen interactions, and gene function. However, producing stable transgenic plants for plants such as soybean is a laborious and time-consuming process, which can impede research progress. Composite plants consisting of wild-type shoots and transgenic roots are an alternative method for generating transgenic plant tissues that can facilitate functional analysis of genes-of-interest involved in root development or root-microbe interactions. In this report, we introduce a novel set of GATEWAY-compatible vectors that enable a wide range of molecular biology uses in roots of soybean composite plants. These vectors incorporate in-frame epitope fusions of green fluorescent protein, 3x-HA, or miniTurbo-ID, which can be easily fused to a gene-of-interest using the GATEWAY cloning system. Moreover, these vectors allow for the identification of transgenic roots using either mCherry fluorescence or the RUBY marker. We demonstrate the functionality of these vectors by expressing subcellular markers in soybean, providing evidence of their effectiveness in generating protein fusions in composite soybean plants. Furthermore, we show how these vectors can be used for gene function analysis by expressing the bacterial effector, AvrPphB in composite roots, enabling the identification of soybean targets via immunoprecipitation followed by mass spectrometry. Additionally, we demonstrate the successful expression of stable miniTurbo-ID fusion proteins in composite roots. Overall, this new set of vectors is a powerful tool that can be used to assess subcellular localization and perform gene function analyses in soybean roots without the need to generate stable transgenic plants.
Collapse
Affiliation(s)
- Joffrey Mejias
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- CIRAD, UMR PHIM, Montpellier, France
| | - Alexandra Margets
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- CIRAD, UMR PHIM, Montpellier, France
| | - Jessica Foster
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Ekkachai Khwanbua
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Jackson Goshon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas R Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Thomas J Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
2
|
Lee HY, Back K. 2-Hydroxymelatonin Promotes Seed Germination by Increasing Reactive Oxygen Species Production and Gibberellin Synthesis in Arabidopsis thaliana. Antioxidants (Basel) 2022; 11:antiox11040737. [PMID: 35453427 PMCID: PMC9028592 DOI: 10.3390/antiox11040737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
It was recently reported that 2-hydroxymelatonin (2-OHM) is responsible for inducing reactive oxygen species (ROS) in plants. ROS are crucial molecules that promote germination through interaction with hormones such as gibberellic acid (GA). In this study, to confirm the pro-oxidant role of 2-OHM, we investigated its effect on seed germination in Arabidopsis thaliana (L.) Heynh. Columbia-0. We found that 2-OHM treatment stimulated seed germination by 90% and 330% in non-dormant and dormant seeds, respectively, whereas melatonin marginally increased germination (~13%) in both seed types compared to untreated control seeds. The germination promotion effects of exogenous 2-OHM treatment were due to increased ROS production followed by the induction of GA synthesis and expression of responsive genes. Accordingly, melatonin 2-hydroxylase (M2H), the gene responsible for 2-OHM synthesis, was strictly expressed only during the germination process. Further molecular genetic analyses using m2h knockout mutant and M2H overexpression clearly supported an increase in ROS triggered by 2-OHM, followed by increased expression of GA-related genes, which shortened the time to germination. Notably, 2-OHM application to m2h knockout mutant seeds fully recovered germination to levels comparable to that of the wild type, whereas melatonin treatment failed to increase germination. Together, these results indicate that 2-OHM is a pivotal molecule that triggers increased ROS production during seed germination, thereby enhancing germination via the GA pathway in Arabidopsis thaliana.
Collapse
|
3
|
Kuma KM, Lopes-Caitar VS, Romero CCT, Silva SMH, Kuwahara MK, Carvalho MCCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. A high efficient protocol for soybean root transformation by Agrobacterium rhizogenes and most stable reference genes for RT-qPCR analysis. PLANT CELL REPORTS 2015; 34:1987-2000. [PMID: 26232349 DOI: 10.1007/s00299-015-1845-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE A 55% transformation efficiency was obtained by our optimized protocol; and we showed that GmELF1 - β and GmELF1 - α are the most stable reference genes for expression analyses under this specific condition. Gene functional analyses are essential to the validation of results obtained from in silico and/or gene-prospecting studies. Genetic transformation methods that yield tissues of transient expression quickly have been of considerable interest to researchers. Agrobacterium rhizogenes-mediated transformation methods, which are employed to generate plants with transformed roots, have proven useful for the study of stress caused by root phytopathogens via gene overexpression and/or silencing. While some protocols have been adapted to soybean plants, transformation efficiencies remain limited; thus, few viable plants are available for performing bioassays. Furthermore, mRNA analyses that employ reverse transcription quantitative polymerase chain reactions (RT-qPCR) require the use of reference genes with stable expression levels across different organs, development steps and treatments. In the present study, an A. rhizogenes-mediated soybean root transformation approach was optimized. The method delivers significantly higher transformation efficiency levels and rates of transformed plant recovery, thus enhancing studies of soybean abiotic conditions or interactions between phytopathogens, such as nematodes. A 55% transformation efficiency was obtained following the addition of an acclimation step that involves hydroponics and different selection processes. The present study also validated the reference genes GmELF1-β and GmELF1-α as the most stable to be used in RT-qPCR analysis in composite plants, mainly under nematode infection.
Collapse
Affiliation(s)
- K M Kuma
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Londrina, Brazil
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - V S Lopes-Caitar
- Genetics and Molecular Biology Department, Universidade Estadual de Londrina, Londrina, Brazil
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - C C T Romero
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - S M H Silva
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, Londrina, Brazil
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - M K Kuwahara
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | | | - R V Abdelnoor
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - W P Dias
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil
| | - F C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soybean), Londrina, Brazil.
| |
Collapse
|