1
|
Pohl C, Schuster L, Rau C, Gutbier U, Beil S, Börnick H, Ostermann K, Stolte S. LC-MS/MS quantification of bacterial and fungal signal peptides via direct injection: a case study of cross-kingdom communication. Anal Bioanal Chem 2025; 417:1677-1689. [PMID: 39903273 PMCID: PMC11876276 DOI: 10.1007/s00216-025-05767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Bacteria and yeast use secreted signal peptides, also known as pheromones, for cell-cell communication within their respective species. Recently, genetic modification has allowed for the extension and exploitation of this type of communication, to communication between organisms from different species and even from different kingdoms. This innovative approach is intended to allow for the large-scale production of specific compounds for applications in medicine and biotechnology while producing reduced amounts of by-products. Until now, the detection of signal peptides, which are often short-lived and only present in small amounts, is usually qualitative, non-selective, and time-consuming and/or requires the presence of additional cell types. Here, an ESI-LC-MS/MS method for the specific quantification of signal peptides from yeast (α- and P-factor) and bacteria (CSF) using a TSKgel column operating under HILIC conditions has been demonstrated. The influence of different matrices, their adsorption behavior, and their stability were investigated. In matrix, LOQs of 0.05 µM, 0.03 µM, and 0.02 µM were obtained for CSF, α-factor, and P-factor, respectively. Subsequently, the developed method was applied to the detection of yeast- and bacteria-specific peptides secreted by genetically modified yeasts. It could be demonstrated that under overexpressing conditions, α-factor and P-factor concentrations of 1 µM were measured, while for CSF concentrations as high as 2.5 µM was reached. Finally, the established method permits the simultaneous, quantitative detection of signal peptides in different matrices and without pre-concentration in near-real time, thus advancing the possibility of tracking cross-kingdom communication.
Collapse
Affiliation(s)
- Carolin Pohl
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Linda Schuster
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Cindy Rau
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
- Faculty of Civil Engineering, Division of Water Science, HTW University of Applied Sciences, Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Uta Gutbier
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Stephan Beil
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Hilmar Börnick
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Kai Ostermann
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Stefan Stolte
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany.
| |
Collapse
|
2
|
Lyu XH, Yang YS, Pan ZQ, Ning SK, Suo F, Du LL. An improved tetracycline-inducible expression system for fission yeast. J Cell Sci 2024; 137:jcs263404. [PMID: 39318285 DOI: 10.1242/jcs.263404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
The ability to manipulate gene expression is valuable for elucidating gene function. In the fission yeast Schizosaccharomyces pombe, the most widely used regulatable expression system is the nmt1 promoter and its two attenuated variants. However, these promoters have limitations, including a long lag, incompatibility with rich media and unsuitability for non-dividing cells. Here, we present a tetracycline-inducible system free of these shortcomings. Our system features the enotetS promoter, which achieves a similar induced level and a higher induction ratio compared to the nmt1 promoter, without exhibiting a lag. Additionally, our system includes four weakened enotetS variants, offering an expression range similar to that of the nmt1 series promoters but with more intermediate levels. To enhance usability, each promoter is combined with a Tet-repressor-expressing cassette in an integration plasmid. Importantly, our system can be used in non-dividing cells, enabling the development of a synchronous meiosis induction method with high spore viability. Moreover, our system allows for the shutdown of gene expression and the generation of conditional loss-of-function mutants. This system provides a versatile and powerful tool for manipulating gene expression in fission yeast.
Collapse
Affiliation(s)
- Xiao-Hui Lyu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu-Sheng Yang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shao-Kai Ning
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research , Tsinghua University, Beijing 102206, China
| |
Collapse
|
3
|
Garg A. A lncRNA-regulated gene expression system with rapid induction kinetics in the fission yeast Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 2020; 26:1743-1752. [PMID: 32788323 PMCID: PMC7566572 DOI: 10.1261/rna.076000.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism for the study of eukaryotic cellular physiology. The organism is genetically tractable and several tools to study the functions of individual genes are available. One such tool is regulatable gene expression and overproduction of proteins. Limitations of currently available overexpression systems include delay in expression after induction, narrow dynamic range, and system-wide changes due to induction conditions. Here I describe a new long noncoding RNA (lncRNA)-regulated, thiamine-inducible expression system that integrates lncRNA-based transcriptional interference at the fission yeast tgp1 promoter with the fast repression kinetics of the thiamine-repressible nmt1 promoter. This hybrid system has rapid induction kinetics, broad dynamic range, and tunable expression via thiamine concentration. The lncRNA-regulated thiamine-inducible system will be advantageous for the study of individual genes and for potential applications in the production of heterologous proteins in fission yeast.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
4
|
Hennig S, Wenzel M, Haas C, Hoffmann A, Weber J, Rödel G, Ostermann K. New approaches in bioprocess-control: Consortium guidance by synthetic cell-cell communication based on fungal pheromones. Eng Life Sci 2018; 18:387-400. [PMID: 32624919 DOI: 10.1002/elsc.201700181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Bioconversions in industrial processes are currently dominated by single-strain approaches. With the growing complexity of tasks to be carried out, microbial consortia become increasingly advantageous and eventually may outperform single-strain fermentations. Consortium approaches benefit from the combined metabolic capabilities of highly specialized strains and species, and the inherent division of labor reduces the metabolic burden for each strain while increasing product yields and reaction specificities. However, consortium-based designs still suffer from a lack of available tools to control the behavior and performance of the individual subpopulations and of the entire consortium. Here, we propose to implement novel control elements for microbial consortia based on artificial cell-cell communication via fungal mating pheromones. Coupling to the desired output is mediated by pheromone-responsive gene expression, thereby creating pheromone-dependent communication channels between different subpopulations of the consortia. We highlight the benefits of artificial communication to specifically target individual subpopulations of microbial consortia and to control e.g. their metabolic profile or proliferation rate in a predefined and customized manner. Due to the steadily increasing knowledge of sexual cycles of industrially relevant fungi, a growing number of strains and species can be integrated into pheromone-controlled sensor-actor systems, exploiting their unique metabolic properties for microbial consortia approaches.
Collapse
Affiliation(s)
- Stefan Hennig
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Mandy Wenzel
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Christiane Haas
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Andreas Hoffmann
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Jost Weber
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany.,Evolva Biotec A/S Lersø Parkallé 42 Copenhagen Denmark
| | - Gerhard Rödel
- Institute of Genetics Technische Universität Dresden Dresden Germany
| | - Kai Ostermann
- Institute of Genetics Technische Universität Dresden Dresden Germany
| |
Collapse
|