1
|
Lei B, Mao Y, Zhao H, Yu J, Wang B, Li P, Hu X. ABA-INSENSITIVE 4 promotes nicotine biosynthesis under high light in Nicotiana attenuata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112416. [PMID: 39920910 DOI: 10.1016/j.plantsci.2025.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Nicotine is a primary alkaloid-derived secondary metabolite found in tobacco (Nicotiana spp.). Excessive light exposure damages chloroplasts and enhances the production of protective secondary metabolites. However, the impact of high light (HL) on nicotine biosynthesis has not been thoroughly explored. We used a comprehensive array of physiological, biochemical, and transgenic analyses to elucidate the role of abscisic acid (ABA)-insensitive 4 (NaABI4) in HL-induced nicotine accumulation in wild tobacco (Nicotiana attenuata). NaABI4, which encodes a key mediator in the retrograde signaling pathway between the chloroplasts and nucleus, was found to induce NaHY5 expression. NaHY5 acts as a long-distance mobile signal, activating putrescine N-methyltransferase 1 (NaPMT1) and quinolinate phosphoribosyl transferase (NaQPT) genes, which are crucial for root nicotine biosynthesis. Moreover, NaABI4 activated the leaf-specific multidrug and toxic compound extrusion (MATE) transporters, NaJAT1 and NaJAT2, facilitating nicotine translocation from the root to the leaf. Notably, NaABI4 is activated by NaPTM, a PHD-type transcription factor with transmembrane domains that encodes a chloroplast envelope-bound transcription factor. These findings offer novel insights into NaABI4-mediated nicotine biosynthesis and reveal its coordination through NaPTM-dependent retrograde signaling under HL stress condition.
Collapse
Affiliation(s)
- Bo Lei
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang 550081, China.
| | - Yan Mao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huina Zhao
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang 550081, China
| | - Jing Yu
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang 550081, China
| | - Bing Wang
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang 550081, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
He S, Xu S, He Z, Hao X. Genome-wide identification, characterization and expression analysis of the bZIP transcription factors in garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1391248. [PMID: 39148621 PMCID: PMC11324451 DOI: 10.3389/fpls.2024.1391248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Introduction The bZIP genes (bZIPs) are essential in numerous biological processes, including development and stress responses. Despite extensive research on bZIPs in many plants, a comprehensive genome-wide analysis of bZIPs in garlic has yet to be undertaken. Methods In this study, we identified and classified 64 AsbZIP genes (AsbZIPs) into 10 subfamilies. A systematic analysis of the evolutionary characteristics of these AsbZIPs, including chromosome location, gene structure, conserved motifs, and gene duplication, was conducted. Furthermore, we also examined the nucleotide diversity, cis-acting elements, and expression profiles of AsbZIPs in various tissues and under different abiotic stresses and hormone treatments. Results and Discussion Our findings revealed that gene replication plays a crucial role in the expansion of AsbZIPs, with a minor genetic bottleneck observed during domestication. Moreover, the identification of cis-acting elements suggested potential associations of AsbZIPs with garlic development, hormone, and stress responses. Several AsbZIPs exhibited tissue-preferential and stress/hormone-responsive expression patterns. Additionally, Asa7G01972 and Asa7G01379 were notably differentially expressed under various stresses and hormone treatments. Subsequent yeast two-hybridization and yeast induction experiments validated their interactions with Asa1G01577, a homologue of ABI5, reinforcing their importance in hormone and abiotic stress responses. This study unveiled the characteristics of the AsbZIP superfamily and lays a solid foundation for further functional analysis of AsbZIP in garlic.
Collapse
Affiliation(s)
- Shutao He
- Institute of Neurobiology, Jining Medical University, Jining, China
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China
| | - Sen Xu
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Zhengjie He
- Rehabilitation Department, Traditional Chinese Medicine Hospital of Yanzhou District of Jining City, Jining, China
| | - Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Shoji T, Hashimoto T, Saito K. Genetic regulation and manipulation of nicotine biosynthesis in tobacco: strategies to eliminate addictive alkaloids. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1741-1753. [PMID: 37647764 PMCID: PMC10938045 DOI: 10.1093/jxb/erad341] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a widely cultivated crop of the genus Nicotiana. Due to the highly addictive nature of tobacco products, tobacco smoking remains the leading cause of preventable death and disease. There is therefore a critical need to develop tobacco varieties with reduced or non-addictive nicotine levels. Nicotine and related pyridine alkaloids biosynthesized in the roots of tobacco plants are transported to the leaves, where they are stored in vacuoles as a defense against predators. Jasmonate, a defense-related plant hormone, plays a crucial signaling role in activating transcriptional regulators that coordinate the expression of downstream metabolic and transport genes involved in nicotine production. In recent years, substantial progress has been made in molecular and genomics research, revealing many metabolic and regulatory genes involved in nicotine biosynthesis. These advances have enabled us to develop tobacco plants with low or ultra-low nicotine levels through various methodologies, such as mutational breeding, genetic engineering, and genome editing. We review the recent progress on genetic manipulation of nicotine production in tobacco, which serves as an excellent example of plant metabolic engineering with profound social implications.
Collapse
Affiliation(s)
- Tsubasa Shoji
- Instutute of Natural Medicine, University of Toyama, Sugitani, Toyama, Toyama 930-0194, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Hashimoto
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
4
|
Dolphen R, Thiravetyan P. Exogenous γ-aminobutyric acid and Bacillus pumilus reduce arsenic uptake and toxicity in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10609-10620. [PMID: 38198091 DOI: 10.1007/s11356-024-31893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
In this study, the addition of γ-aminobutyric acid (GABA), Bacillus pumilus, or both, was found to enhance rice growth and yield while significantly decreasing arsenic (As) accumulation in Oryza sativa rice tissues. GABA emerged as a regulator of iron (Fe) homeostasis, acting as a signaling modulator that influenced phytosiderophore secretions in the plant. Meanwhile, B. pumilus directly increased Fe levels through siderophore production, promoting the development of Fe-rich rice plants. Subsequently, Fe competed with As uptake at the root surface, leading to decreased As levels and translocation to the grains. Furthermore, the addition of GABA and B. pumilus optimized rice indole-3 acetic acid (IAA) contents, thereby adjusting cell metabolite balance under As stress. This adjustment results in low malondialdehyde (MDA) contents in the leaves and roots during the early and late vegetative phases, effectively reducing oxidative stress. When added to As-contaminated soil, GABA and B. pumilus effectively maintained endogenous GABA levels and exhibited low ROS generation, similar to normal soil. Concurrently, GABA and B. pumilus significantly downregulated the activity of OsLsi1, OsLsi2, and OsABCC1 in roots, reducing As uptake through roots, shoots, and grains, respectively. These findings suggest that GABA and B. pumilus additions impede As translocation through grains, ultimately enhancing rice productivity under As stress.
Collapse
Affiliation(s)
- Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| |
Collapse
|
5
|
Stokes C, Pino JA, Hagan DW, Torres GE, Phelps EA, Horenstein NA, Papke RL. Betel quid: New insights into an ancient addiction. Addict Biol 2022; 27:e13223. [PMID: 36001424 PMCID: PMC9552247 DOI: 10.1111/adb.13223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022]
Abstract
The use of areca nuts (areca) in the form of betel quids constitutes the fourth most common addiction in the world, associated with high risk for oral disease and cancer. Areca is a complex natural product, making it difficult to identify specific components associated with the addictive and carcinogenic properties. It is commonly believed that the muscarinic agonist arecoline is at the core of the addiction. However, muscarinic receptor activation is not generally believed to support drug-taking behaviour. Subjective accounts of areca use include descriptions of both sedative and stimulatory effects, consistent with the presence of multiple psychoactive agents. We have previously reported partial agonism of α4-containing nicotinic acetylcholine receptors by arecoline and subsequent inhibition of those receptors by whole areca broth. In the present study, we report the inhibition of nicotinic acetylcholine receptors and other types of neurotransmitter receptors with compounds of high molecular weight in areca and the ability of low molecular weight areca extract to activate GABA and glutamate receptors. We confirm the presence of a high concentration of GABA and glutamate in areca. Additionally, data also indicate the presence of a dopamine and serotonin transporter blocking activity in areca that could account for the reported stimulant and antidepressant activity. Our data suggest that toxic elements of high molecular weight may contribute to the oral health liability of betel quid use, while two distinct low molecular weight components may provide elements of reward, and the nicotinic activity of arecoline contributes to the physical dependence of addiction.
Collapse
Affiliation(s)
- Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610
| | - Jose A. Pino
- Department of Medicine, School of Medicine, University of Atacama, Copiapó, Chile
| | - D. Walker Hagan
- Department of Biomedical Engineering University of Florida, PO Box 100267 Gainesville, FL 32611
| | - Gonzalo E. Torres
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine at City College, New York, NY 10031
| | - Edward A. Phelps
- Department of Biomedical Engineering University of Florida, PO Box 100267 Gainesville, FL 32611
| | - Nicole A. Horenstein
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610
| |
Collapse
|
6
|
Gao J, Qian Z, Zhang Y, Zhuang S. Exogenous spermidine regulates the anaerobic enzyme system through hormone concentrations and related-gene expression in Phyllostachys praecox roots under flooding stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:182-196. [PMID: 35868108 DOI: 10.1016/j.plaphy.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Acclimation to hypoxia and anoxia is important in various ecological systems, especially flooded soil. Phyllostachys pracecox is sensitive to flooding, and therefore, it is important to explore ways of alleviating hypoxia stress in the roots. In this study, we investigated the regulatory effect of spermidine (Spd) on flooded P. praecox seedlings. METHODS A batch experiment was carried out in roots treated with Spd under flooding for eight days. The following factors were subsequently measured: growth, survival rate, root respiratory activity, soluble protein and anaerobic respiration enzyme contents (pyruvate decarboxylase, PDC; alcohol dehydrogenase, ADH; lactate dehydrogenase, LDH; alanine aminotransferase, AlaAT), S-adenosylmethionine decarboxylase (SAMDC), nitrate reductase (NR), ACC oxidase (ACO) and ACC synthetase (ACS) activities, free Spd, spermine (Spm) and the diamine precursor putrescine (Put) content, indole-3-acetic acid (IAA) and abscisic acid (ABA) content, ethylene emissions and expression of hormone-related genes. RESULTS Application of Spd promoted root growth (root length, volume, surface and dry weight) and root respiratory inhibition, improved the soluble protein content, and reduced the O2·- production rate, H2O2 and MDA content to alleviate the damage of roots under flooding. A significant increase in SAMDC activity, and ABA and IAA contents were also observed, along with a reduction in ethylene emissions, NR, ACO and ACS activities (p < 0.05). Exogenous Spd increased the free Spd and Spm contents in the P. praecox roots, but decreased the free Put content. Taken together, these findings suggest that hypoxia stress was alleviated. Moreover, exogenous Spd up-regulated the expression of auxin-related genes ARF1, AUX1, AUX2, AUX3 and AUX4, and down-regulated the expression of ethylene-related ACO and ACS genes during flooding. In addition, correlation and RDA analysis showed that ARF1, ACO and ACS significantly promoted the expression of auxin, ACO and ACS enzyme activities, respectively (p < 0.05), while ADH, NR, AlaAT, ethylene emissions, Put, Spd, ACS and ACO were significantly correlated with ACS, ACO, and auxin-related gene expression (p < 0.05). Overall, ethylene emissions, ACS and ACO were identified as the main drivers of ethylene and auxin-related gene structure. CONCLUSIONS These results suggest that Spd regulated hormone concentrations, the content of Spd, Spm and Put, and related gene expression, in turn regulating physiological changes such as anaerobic enzyme activity, mitigating flooding stress in the roots and improving overall growth. Spd therefore has the potential to improve the adaptability of P. praecox to flooding stress.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuangzhuang Qian
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuhe Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
7
|
Duan L, Mo Z, Fan Y, Li K, Yang M, Li D, Ke Y, Zhang Q, Wang F, Fan Y, Liu R. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:318. [PMID: 35448973 PMCID: PMC9027840 DOI: 10.1186/s12864-022-08547-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.
Collapse
Affiliation(s)
- Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Kuiyin Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Dongcheng Li
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuzhou Ke
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qian Zhang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Feiyan Wang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yu Fan
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Renxiang Liu
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
8
|
Zhang M, Zhao Y, Yang C, Shi H. The combination of transcriptome and metabolome reveals the molecular mechanism by which topping and salicylic acid treatment affect the synthesis of alkaloids in Nicotiana tabacum L. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2025915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mengyue Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Yuanyuan Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Chunting Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Hongzhi Shi
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| |
Collapse
|
9
|
Long-Term Waterlogging as Factor Contributing to Hypoxia Stress Tolerance Enhancement in Cucumber: Comparative Transcriptome Analysis of Waterlogging Sensitive and Tolerant Accessions. Genes (Basel) 2021; 12:genes12020189. [PMID: 33525400 PMCID: PMC7912563 DOI: 10.3390/genes12020189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Waterlogging (WL), excess water in the soil, is a phenomenon often occurring during plant cultivation causing low oxygen levels (hypoxia) in the soil. The aim of this study was to identify candidate genes involved in long-term waterlogging tolerance in cucumber using RNA sequencing. Here, we also determined how waterlogging pre-treatment (priming) influenced long-term memory in WL tolerant (WL-T) and WL sensitive (WL-S) i.e., DH2 and DH4 accessions, respectively. This work uncovered various differentially expressed genes (DEGs) activated in the long-term recovery in both accessions. De novo assembly generated 36,712 transcripts with an average length of 2236 bp. The results revealed that long-term waterlogging had divergent impacts on gene expression in WL-T DH2 and WL-S DH4 cucumber accessions: after 7 days of waterlogging, more DEGs in comparison to control conditions were identified in WL-S DH4 (8927) than in WL-T DH2 (5957). Additionally, 11,619 and 5007 DEGs were identified after a second waterlogging treatment in the WL-S and WL-T accessions, respectively. We identified genes associated with WL in cucumber that were especially related to enhanced glycolysis, adventitious roots development, and amino acid metabolism. qRT-PCR assay for hypoxia marker genes i.e., alcohol dehydrogenase (adh), 1-aminocyclopropane-1-carboxylate oxidase (aco) and long chain acyl-CoA synthetase 6 (lacs6) confirmed differences in response to waterlogging stress between sensitive and tolerant cucumbers and effectiveness of priming to enhance stress tolerance.
Collapse
|
10
|
Alves RDFB, Menezes-Silva PE, Sousa LF, Loram-Lourenço L, Silva MLF, Almeida SES, Silva FG, Perez de Souza L, Fernie AR, Farnese FS. Evidence of drought memory in Dipteryx alata indicates differential acclimation of plants to savanna conditions. Sci Rep 2020; 10:16455. [PMID: 33020558 PMCID: PMC7536413 DOI: 10.1038/s41598-020-73423-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
The remarkable phytogeographic characteristics of the Brazilian savanna (Cerrado) resulted in a vegetation domain composed of plants with high structural and functional diversity to tolerate climate extremes. Here we used a key Cerrado species (Dipteryx alata) to evaluate if species of this domain present a mechanism of stress memory, responding more quickly and efficiently when exposed to recurrent drought episodes. The exposure of D. alata seedlings to drought resulted in several changes, mainly in physiological and biochemical traits, and these changes differed substantially when the water deficit was imposed as an isolated event or when the plants were subjected to drought cycles, suggesting the existence of a drought memory mechanism. Plants submitted to recurrent drought events were able to maintain essential processes for plant survival when compared to those submitted to drought for the first time. This differential acclimation to drought was the result of orchestrated changes in several metabolic pathways, involving differential carbon allocation for defense responses and the reprogramming and coordination of primary, secondary and antioxidant metabolism. The stress memory in D. alata is probably linked the evolutionary history of the species and reflects the environment in which it evolved.
Collapse
Affiliation(s)
| | | | - Leticia F Sousa
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | | | - Maria L F Silva
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | - Sabrina E S Almeida
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | - Fabiano G Silva
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | | | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476, Potsdam-Gölm, Germany
| | - Fernanda S Farnese
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil.
| |
Collapse
|
11
|
Volis S. Conservation-oriented restoration - a two for one method to restore both threatened species and their habitats. PLANT DIVERSITY 2019; 41:50-58. [PMID: 31193129 PMCID: PMC6520488 DOI: 10.1016/j.pld.2019.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 05/24/2023]
Abstract
There is an urgent need for a new conservation approach as mere designation of protected areas, the primary approach to conserving biodiversity, revealed its low conservation efficiency and inability to cope with numerous challenges faced by nature in the Anthropocene. The paper discusses the new concept, which proposes that ecological restoration becomes an integral part of conservation planning and implementation, and is done using threatened plant species that are introduced not only into locations where they currently grow or grew in the recent past, but also into suitable locations within their potential distribution range. This new concept is called conservation-oriented restoration to distinguish it from the traditional restoration. Although the number of restoration projects focusing on recreation of once existing natural habitats is instantly growing, the majority of ecological restoration projects, in contrast to conservation-oriented restoration, have predominantly utilitarian goals, e.g. improvement or air quality, erosion control or soil replenishment. Conservation-oriented restoration should not be seen as an alternative either to the latter, or to the conservation dealing with particular threatened species (species-targeted conservation). These three conservation approaches, traditional ecological restoration, species-targeted conservation, and conservation-oriented restoration differ not only in broadly defined goals and attributes of their targets, but also in the types of ecosystems they are applicable to, and complement each other in combating global deterioration of the environment and biodiversity loss.
Collapse
|
12
|
Guo JL, Cao WJ, Li ZM, Zhang YH, Volis S. Conservation implications of population genetic structure in a threatened orchid Cypripedium tibeticum. PLANT DIVERSITY 2019; 41:13-18. [PMID: 30931413 PMCID: PMC6412106 DOI: 10.1016/j.pld.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 05/15/2023]
Abstract
Cypripedium tibeticum is a threatened orchid which efficient conservation requires knowledge of its extent and structure of genetic variation. Using two chloroplast DNA fragments (rps16 and trnL-F), we analyzed 157 individuals from 9 populations representing the species range in China. Seven haplotypes were identified. C. tibeticum had high total genetic diversity (H T = 0.80) with major contribution to this diversity made by among-population component (G ST = 0.64, Φ ST = 0.86). However, despite high population differentiation there was no clear phylogeographic structure. The populations CY and DC made the greatest contribution to the total gene diversity as well as allelic richness. The possible mechanisms and implications of these findings for conservation of the species are discussed.
Collapse
Affiliation(s)
- Jian-Ling Guo
- Life Science Department, Yunnan Normal University, Kunming 650500, China
| | - Wen-Juan Cao
- Life Science Department, Yunnan Normal University, Kunming 650500, China
| | - Zhi-Min Li
- Life Science Department, Yunnan Normal University, Kunming 650500, China
| | - Yong-Hong Zhang
- Life Science Department, Yunnan Normal University, Kunming 650500, China
| | - Sergei Volis
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| |
Collapse
|