1
|
Zhang S, Wu Y, Skaro M, Cheong JH, Bouffier-Landrum A, Torrres I, Guo Y, Stupp L, Lincoln B, Prestel A, Felt C, Spann S, Mandal A, Johnson N, Arnold J. Computer vision models enable mixed linear modeling to predict arbuscular mycorrhizal fungal colonization using fungal morphology. Sci Rep 2024; 14:10866. [PMID: 38740920 DOI: 10.1038/s41598-024-61181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived from Sorghum bicolor and S. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.
Collapse
Affiliation(s)
- Shufan Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yue Wu
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Michael Skaro
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | | | - Isaac Torrres
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yinping Guo
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Lauren Stupp
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Brooke Lincoln
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Anna Prestel
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Camryn Felt
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Sedona Spann
- School of Earth and Sustainability and Department of Biological Sciences, North Arizona University, Flagstaff, AZ, USA
| | - Abhyuday Mandal
- Statistics Department, University of Georgia, Athens, GA, USA
| | - Nancy Johnson
- School of Earth and Sustainability and Department of Biological Sciences, North Arizona University, Flagstaff, AZ, USA
| | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Liu Y, Li W, Sui X, Li A, Li K, Gong Y. An exotic plant successfully invaded as a passenger driven by light availability. FRONTIERS IN PLANT SCIENCE 2022; 13:1047670. [PMID: 36570959 PMCID: PMC9767969 DOI: 10.3389/fpls.2022.1047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Invasive exotic plant species (IEPs) are widely distributed across the globe, but whether IEPs are drivers or passengers of habitat change in the invaded spaces remains unclear. Here, we carried out a vegetation and soil survey in 2018 and two independent field experiments (Pedicularis kansuensis removal in 2014 and 2015, and fertilization experiment since 2012) and found that the invasive annual P. kansuensis was at a disadvantage in light competition compared with perennial native grasses, but the successful invasion of P. kansuensis was due to the sufficient light resources provided by the reduced coverage of the native species. Conversely, nitrogen enrichment can effectively inhibit P. kansuensis invasion by increasing the photocompetitive advantage of the native species. sP. kansuensis invasion did not reduce species richness, but did increase plant community coverage, productivity and soil nutrients. Furthermore, the removal of P. kansuensis had little effect on the plant community structure and soil properties. Our results suggest that the passenger model perfectly explains the benign invasive mechanism of P. kansuensis. The invasion "ticket" of P. kansuensis is a spare ecological niche for light resources released by overgrazing.
Collapse
Affiliation(s)
- Yanyan Liu
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaolin Sui
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming, China
| | - Airong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Chinese Academy of Sciences, Kunming, China
| | - Kaihui Li
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| | - Yanming Gong
- Bayinbuluk Grassland Ecosystem Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Chinese Academy of Sciences (CAS) Research Center for Ecology and Environment of Central Asia, Urumqi, China
| |
Collapse
|
3
|
Zhang Y, Wang Q, Xu L, Ma S, Cui D, Zhu K, Feng W. Mixed conifer-broadleaf trees on arbuscular mycorrhizal and ectomycorrhizal communities in rhizosphere soil of different plantation stands in the temperate zone, Northeast China. Front Microbiol 2022; 13:986515. [PMID: 36238594 PMCID: PMC9551461 DOI: 10.3389/fmicb.2022.986515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
In comparison with ectomycorrhizal (EM) tree species, arbuscular mycorrhizal (AM) trees have different litter quality and nitrogen cycle modes, which may affect mycorrhizal colonization and the community composition and diversity. However, available studies addressing the mycorrhizal fungal colonization rate, diversity and community composition in mixed forest stands composed of AM and EM trees are rare. In the present study, we assessed litter quality, soil physicochemical properties and correlated them with mycorrhizal community characteristics in rhizosphere soils of monoculture and mixture plantation stands of AM tree species (Fraxinus mandschurica Rupr.) and EM tree species (Larix gmelinii Rupr., Picea koraiensis Nakai) in Northeast China. We hypothesized that (1) the effect of mixture pattern on mycorrhizal colonization rate and diversity would change with tree species, (2) the effect of mixture pattern on mycorrhizal community composition would be less pronounced in comparison with that of tree species. We found that mixture did not change AMF colonization rate regardless of mixture identity, whereas mixture and tree species exerted significant effects on EMF colonization rate. For AMF community, both M-AS (Fraxinus mandschurica Rupr. and Picea koraiensis Nakai) and M-AL (Fraxinus mandschurica Rupr. and Larix gmelinii Rupr.) mixtures significantly increased Pielou index and Simpson index, whereas only M-AS significantly increased Sobs. For EMF community, mixture significantly affected examined diversity indices except for Chao1. Mixture significantly shifted AMF and EMF community, and the magnitude was tree species dependent. The dominant genera in AMF and EMF communities in plantation stands were Glomus and Tomentella, respectively. The EnvFit analysis showed that the determinant factors of EMF community are soil moisture, pH, nitrate nitrogen content, dissolved organic nitrogen content, soil organic matter content, soil organic carbon/total nitrogen and litter carbon/total nitrogen. In conclusion, mixed conifer-broadleaf trees significantly changed soil physicochemical properties, litter quality as well as mycorrhizal fungi community diversity and composition.
Collapse
|
4
|
Nitrogen Addition Does Not Change AMF Colonization but Alters AMF Composition in a Chinese Fir (Cunninghamia lanceolata) Plantation. FORESTS 2022. [DOI: 10.3390/f13070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims: Our aim was to investigate how N addition affects arbuscular mycorrhizal fungal (AMF) growth in Chinese fir plantations. Methods: A Chinese fir plantation was treated with four different N addition treatments for one and half years starting in April 2019. AMF colonization, hyphal length density, community composition, and soil properties were under measurement. Results: N addition caused inapparent effects on AMF colonization, hyphal length density, and functional guilds (rhizophilic, edaphophilic, and ancestral). The predominant AMF species in the soil was Septoglomus viscosum. N addition altered AMF community and some rare species (e.g., Entrophospora infrequens) disappeared with N addition. Conclusion: AMF community structure was more sensitive to short-time N deposition than the symbiotic relationship between AMF and host plants.
Collapse
|