1
|
Kang JS, Yu JG, Xiang QP, Zhang XC. The Possible Earliest Allopolyploidization in Tracheophytes Revealed by Phylotranscriptomics and Morphology of Selaginellaceae. Mol Biol Evol 2024; 41:msae153. [PMID: 39101470 PMCID: PMC11299036 DOI: 10.1093/molbev/msae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Selaginellaceae, originated in the Carboniferous and survived the Permian-Triassic mass extinction, is the largest family of lycophyte, which is sister to other tracheophytes. It stands out from tracheophytes by exhibiting extraordinary habitat diversity and lacking polyploidization. The organelle genome-based phylogenies confirmed the monophyly of Selaginella, with six or seven subgenera grouped into two superclades, but the phylogenetic positions of the enigmatic Selaginella sanguinolenta clade remained problematic. Here, we conducted a phylogenomic study on Selaginellaceae utilizing large-scale nuclear gene data from RNA-seq to elucidate the phylogeny and explore the causes of the phylogenetic incongruence of the S. sanguinolenta clade. Our phylogenetic analyses resolved three different positions of the S. sanguinolenta clade, which were supported by the sorted three nuclear gene sets, respectively. The results from the gene flow test, species network inference, and plastome-based phylogeny congruently suggested a probable hybrid origin of the S. sanguinolenta clade involving each common ancestor of the two superclades in Selaginellaceae. The hybrid hypothesis is corroborated by the evidence from rhizophore morphology and spore micromorphology. The chromosome observation and Ks distributions further suggested hybridization accompanied by polyploidization. Divergence time estimation based on independent datasets from nuclear gene sets and plastid genome data congruently inferred that allopolyploidization occurred in the Early Triassic. To our best knowledge, the allopolyploidization in the Mesozoic reported here represents the earliest record of tracheophytes. Our study revealed a unique triad of phylogenetic positions for a hybrid-originated group with comprehensive evidence and proposed a hypothesis for retaining both parental alleles through gene conversion.
Collapse
Affiliation(s)
- Jong-Soo Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ji-Gao Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
2
|
Zhao J, He ZR, Fang SL, Han XK, Jiang LY, Hu YP, Yu H, Zhang LB, Zhou XM. Phylogenomic data resolved the deep relationships of Gymnogynoideae (Selaginellaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1405253. [PMID: 39081519 PMCID: PMC11287774 DOI: 10.3389/fpls.2024.1405253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
The unresolved phylogenetic framework within the Selaginellaceae subfamily Gymnogynoideae (ca. 130 species) has hindered our comprehension of the diversification and evolution of Selaginellaceae, one of the most important lineages in land plant evolution. Here, based on plastid and nuclear data extracted from genomic sequencing of more than 90% species of all genera except two in Gymnogynoideae, a phylogenomic study focusing on the contentious relationships among the genera in Gymnogynoideae was conducted. Our major results included the following: (1) Only single-copy region (named NR) and only one ribosomal operon was firstly found in Afroselaginella among vascular plants, the plastome structure of Gymnogynoideae is diverse among the six genera, and the direct repeats (DR) type is inferred as the ancestral state in the subfamily; (2) The first strong evidence was found to support Afroselaginella as a sister to Megaloselaginella. Alternative placements of Ericetorum and Gymnogynum were detected, and their relationships were investigated by analyzing the variation of phylogenetic signals; and (3) The most likely genus-level relationships in Gymnogynoideae might be: ((Bryodesma, Lepidoselaginella), (((Megaloselaginella, Afroselaginella), Ericetorum), Gymnogynum)), which was supported by maximum likelihood phylogeny based on plastid datasets, maximum likelihood, and Bayesian inference based on SCG dataset and concatenated nuclear and plastid datasets and the highest proportion of phylogenetic signals of plastid genes.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Xu-Ke Han
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Lu-Yao Jiang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Yu-Ping Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Li-Bing Zhang
- Missouri Botanical Garden, St. Louis, MO, United States
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Kang JS, Giang VNL, Park HS, Park YS, Cho W, Nguyen VB, Shim H, Waminal NE, Park JY, Kim HH, Yang TJ. Evolution of the Araliaceae family involved rapid diversification of the Asian Palmate group and Hydrocotyle specific mutational pressure. Sci Rep 2023; 13:22325. [PMID: 38102332 PMCID: PMC10724125 DOI: 10.1038/s41598-023-49830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
The Araliaceae contain many valuable species in medicinal and industrial aspects. We performed intensive phylogenomics using the plastid genome (plastome) and 45S nuclear ribosomal DNA sequences. A total of 66 plastome sequences were used, 13 of which were newly assembled in this study, 12 from new sequences, and one from existing data. While Araliaceae plastomes showed conserved genome structure, phylogenetic reconstructions based on four different plastome datasets revealed phylogenetic discordance within the Asian Palmate group. The divergence time estimation revealed that splits in two Araliaceae subfamilies and the clades exhibiting phylogenetic discordances in the Asian Palmate group occurred at two climatic optima, suggesting that global warming events triggered species divergence, particularly the rapid diversification of the Asian Palmate group during the Middle Miocene. Nucleotide substitution analyses indicated that the Hydrocotyloideae plastomes have undergone accelerated AT-biased mutations (C-to-T transitions) compared with the Aralioideae plastomes, and the acceleration may occur in their mitochondrial and nuclear genomes as well. This implies that members of the genus Hydrocotyle, the only aquatic plants in the Araliaceae, have experienced a distinct evolutionary history from the other species. We also discussed the intercontinental disjunction in the genus Panax and proposed a hypothesis to complement the previously proposed hypothesis. Our results provide the evolutionary trajectory of Araliaceae and advance our current understanding of the evolution of Araliaceae species.
Collapse
Affiliation(s)
- Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Vo Ngoc Linh Giang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, South Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Van Binh Nguyen
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Biology, Dalat University, Dalat, 670000, Vietnam
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Nomar Espinosa Waminal
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Gatersleben, Germany
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Hee Kim
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea.
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Dong SS, Zhou XP, Peng T, Liu Y. Mitochondrial RNA editing sites affect the phylogenetic reconstruction of gymnosperms. PLANT DIVERSITY 2023; 45:485-489. [PMID: 37601539 PMCID: PMC10435907 DOI: 10.1016/j.pld.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 08/22/2023]
Abstract
•RNA editing sites may contain homoplasious signals that cause artifactual inferences in phylogenetic analyses.•Excluding RNA editing sites from gymnosperm mitochondrial genes restored the sister relationship of gnetophytes and Pinaceae.•Phylogenetic analysis based on mitochondrial genomic data should carefully evaluate the impact of RNA editing sites.
Collapse
Affiliation(s)
- Shan-Shan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Xu-Ping Zhou
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Tao Peng
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| |
Collapse
|
5
|
Qu XJ, Zou D, Zhang RY, Stull GW, Yi TS. Progress, challenge and prospect of plant plastome annotation. FRONTIERS IN PLANT SCIENCE 2023; 14:1166140. [PMID: 37324662 PMCID: PMC10266425 DOI: 10.3389/fpls.2023.1166140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
The plastome (plastid genome) represents an indispensable molecular data source for studying phylogeny and evolution in plants. Although the plastome size is much smaller than that of nuclear genome, and multiple plastome annotation tools have been specifically developed, accurate annotation of plastomes is still a challenging task. Different plastome annotation tools apply different principles and workflows, and annotation errors frequently occur in published plastomes and those issued in GenBank. It is therefore timely to compare available annotation tools and establish standards for plastome annotation. In this review, we review the basic characteristics of plastomes, trends in the publication of new plastomes, the annotation principles and application of major plastome annotation tools, and common errors in plastome annotation. We propose possible methods to judge pseudogenes and RNA-editing genes, jointly consider sequence similarity, customed algorithms, conserved domain or protein structure. We also propose the necessity of establishing a database of reference plastomes with standardized annotations, and put forward a set of quantitative standards for evaluating plastome annotation quality for the scientific community. In addition, we discuss how to generate standardized GenBank annotation flatfiles for submission and downstream analysis. Finally, we prospect future technologies for plastome annotation integrating plastome annotation approaches with diverse evidences and algorithms of nuclear genome annotation tools. This review will help researchers more efficiently use available tools to achieve high-quality plastome annotation, and promote the process of standardized annotation of the plastome.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Dan Zou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Rui-Yu Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Gregory W. Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Carvalho LR, Nunes R, Sobreiro MB, Dias RO, Corvalán LCJ, Braga-Ferreira RS, Targueta CP, Telles MPC. The complete chloroplast genome sequence of Eugenia klotzschiana O. Berg unveils the evolutionary dynamics in plastomes of Myrteae DC. tribe (Myrtaceae). Gene 2023:147488. [PMID: 37196890 DOI: 10.1016/j.gene.2023.147488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Myrteae is the most diversified tribe in the Myrtaceae family and has great ecological and economic importance. Here, we performed the assembly and annotation of the chloroplast genome of Eugenia klotzschiana O. Berg and used this in a comparative analysis with other 13 species from the Myrteae tribe. The E. klotzschiana plastome exhibited a length of 158,977 bp and a very conserved structure and gene composition when compared with other Myrteae genomes. We identified 34 large repetitive sequences and 94 SSR repeats in E. klotzschiana plastome. The trnT-trnL, rpl32-trnL, ndhF-rpl32, psbE-petL, and ycf1 regions were identified as mutational hotspots. A negative selection signal was detected in 74 protein-coding genes while neutral selection was detected in two genes (rps12 and psaI). Furthermore, 222 RNA editing sites were identified in the E. klotzschiana plastome. We also obtained a plastome-based Myrtales phylogenetic tree, including E. klotzschiana for the first time in a molecular phylogeny, recovering its sister relationship for all other Eugenia species. Our results illuminate how evolution shaped the chloroplast genome structure and composition in the Myrteae tribe, especially in the E. klotzschiana plastome.
Collapse
Affiliation(s)
- Larissa R Carvalho
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Rhewter Nunes
- Instituto Federal de Goiás - Campus Cidade de Goiás, Goiás, GO, Brasil.
| | - Mariane B Sobreiro
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Renata O Dias
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Leonardo C J Corvalán
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | | | - Cíntia P Targueta
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Mariana P C Telles
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brasil; Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brasil
| |
Collapse
|
7
|
Chen S, Wang T, Shu J, Xiang Q, Yang T, Zhang X, Yan Y. Plastid Phylogenomics and Plastomic Diversity of the Extant Lycophytes. Genes (Basel) 2022; 13:genes13071280. [PMID: 35886063 PMCID: PMC9316050 DOI: 10.3390/genes13071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Although extant lycophytes represent the most ancient surviving lineage of early vascular plants, their plastomic diversity has long been neglected. The ancient evolutionary history and distinct genetic diversity patterns of the three lycophyte families, each with its own characteristics, provide an ideal opportunity to investigate the interfamilial relationships of lycophytes and their associated patterns of evolution. To compensate for the lack of data on Lycopodiaceae, we sequenced and assembled 14 new plastid genomes (plastomes). Combined with other lycophyte plastomes available online, we reconstructed the phylogenetic relationships of the extant lycophytes based on 93 plastomes. We analyzed, traced, and compared the plastomic diversity and divergence of the three lycophyte families (Isoëtaceae, Lycopodiaceae, and Selaginellaceae) in terms of plastomic diversity by comparing their plastome sizes, GC contents, substitution rates, structural rearrangements, divergence times, ancestral states, RNA editings, and gene losses. Comparative analysis of plastid phylogenomics and plastomic diversity of three lycophyte families will set a foundation for further studies in biology and evolution in lycophytes and therefore in vascular plants.
Collapse
Affiliation(s)
- Sisi Chen
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jiangping Shu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qiaoping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
| | - Tuo Yang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
| | - Xianchun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing 100093, China;
- Correspondence: (X.Z.); (Y.Y.)
| | - Yuehong Yan
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China; (S.C.); (T.W.); (J.S.); (T.Y.)
- Correspondence: (X.Z.); (Y.Y.)
| |
Collapse
|
8
|
Plastid phylogenomic analyses of the Selaginella sanguinolenta group (Selaginellaceae) reveal conflict signatures resulting from sequence types, outlier genes, and pervasive RNA editing. Mol Phylogenet Evol 2022; 173:107507. [PMID: 35589053 DOI: 10.1016/j.ympev.2022.107507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
Different from the generally conserved plastomes (plastid genomes) of most land plants, the Selaginellaceae plastomes exhibit dynamic structure, high GC content and high substitution rates. Previous plastome analyses identified strong conflict on several clades in Selaginella, however the factors causing the conflictions and the impact on the phylogenetic inference have not been sufficiently investigated. Here, we dissect the distribution of phylogenetic signals and conflicts in Selaginella sanguinolenta group, the plastome of which is DR (direct repeats) structure and with genome-wide RNA editing. We analyzed the data sets including 22 plastomes representing all species of the S. sanguinolenta group, covering the entire geographical distribution from the Himalayas to Siberia and the Russian Far East regions. We recovered four different topologies by applying multispecies coalescent (ASTRAL) and concatenation methods (IQ-TREE and RAxML) on four data sets of PC (protein-coding genes), NC (non-coding sequences), PCN (the concatenated PC and NC), and RC (predicted RNA editing sites "C" were corrected by "T"), respectively. Six monophyletic clades, S. nummularifolia clade, S. rossii clade, S. sajanensis clade, S. sanguinolenta I clade, S. sanguinolenta II clade, and S. sanguinolenta III clade, were consistently resolved and supported by the characteristics of GC content, RNA editing frequency, and gene content. However, the relationships among these clades varied across the four topologies. To explore the underlying causes of the uncertainty, we compared the phylogenetic signals of the four topologies. We identified that the sequence types (coding versus non-coding), outlier genes (genes with extremely high |ΔGLS| values), and C-to-U RNA editing frequency in the protein-coding genes were responsible for the unstable phylogenomic relationship. We further revealed a significant positive correlation between the |ΔGLS| values and the variation coefficient of the RNA editing number. Our results demonstrated that the coalescent method performed better than the concatenation method in overcoming the problems caused by outlier genes and extreme RNA editing events. Our study particularly focused on the importance of exploring the plastid phylogenomic conflicts and suggested conducting concatenated analyses cautiously when adopting organelle genome data.
Collapse
|
9
|
Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, Wu S, Liu Y, Gong Y, Feng X, Ma J, Chang G, Huang J, Yang Y, Wang H, Liu M, Xu Y, Liang H, Yu J, Cai Y, Zhang Z, Fan Y, Mu W, Sahu SK, Liu S, Lang X, Yang L, Li N, Habib S, Yang Y, Lindstrom AJ, Liang P, Goffinet B, Zaman S, Wegrzyn JL, Li D, Liu J, Cui J, Sonnenschein EC, Wang X, Ruan J, Xue JY, Shao ZQ, Song C, Fan G, Li Z, Zhang L, Liu J, Liu ZJ, Jiao Y, Wang XQ, Wu H, Wang E, Lisby M, Yang H, Wang J, Liu X, Xu X, Li N, Soltis PS, Van de Peer Y, Soltis DE, Gong X, Liu H, Zhang S. The Cycas genome and the early evolution of seed plants. NATURE PLANTS 2022; 8:389-401. [PMID: 35437001 PMCID: PMC9023351 DOI: 10.1038/s41477-022-01129-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 05/05/2023]
Abstract
Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yongbo Liu
- State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Xiuyan Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianchao Ma
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Guanxiao Chang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yong Yang
- College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Yu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaowu Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shuchun Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoan Lang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Nanning Botanical Garden, Nanning, China
| | - Leilei Yang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Na Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Sadaf Habib
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongqiong Yang
- Sichuan Cycas panzhihuaensis National Nature Reserve, Panzhihua, China
| | | | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Dexiang Li
- Nanning Botanical Garden, Nanning, China
| | - Jian Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Xiaobo Wang
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jue Ruan
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chi Song
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangyi Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB UGent Center for Plant Systems Biology, Gent, Belgium
| | - Liangsheng Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Jianquan Liu
- The College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Nan Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB UGent Center for Plant Systems Biology, Gent, Belgium.
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
10
|
Zhou XM, Zhao J, Yang JJ, Le Péchon T, Zhang L, He ZR, Zhang LB. Plastome structure, evolution, and phylogeny of Selaginella. Mol Phylogenet Evol 2022; 169:107410. [PMID: 35031459 DOI: 10.1016/j.ympev.2022.107410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
As one of the earliest land plant lineages, Selaginella is important for studying land plant evolution. It is the largest genus of lycophytes containing 700-800 species. Some unique characters of Selaginella plastomes have been reported, but based only on 20 species. There have been no plastome phylogenies of Selaginella based on a relatively large sampling, and no efforts have been made to resolve the phylogeny of the enigmatic Sinensis group whose relationships have been unclear based on small datasets. Here we investigated the structures of 59 plastomes representing 51 species covering all six subgenera and 18 sections of Selaginella except two sections and including the intriguing Sinensis group for the first time. Our major results include: (1) the plastome size of Selaginella ranges tremendously from 78,492 bp to 187,632 bp; (2) there are numerous gene losses in Selaginella comparing with other lycophytes, Isoëtaceae and Lycopodiaceae; (3) the gene contents and plastome structures in Selaginella vary lineage-specifically and all infrageneric taxa are well supported in the plastome phylogeny; (4) the ndh gene family tends to lose or pseudogenize in those species with DR structure and without other short or medium repeats; (5) the short and medium repeat regions in SC mediate many conformations causing diverse and complex plastome structures, and six new conformations are discovered; (6) forty-eight species sampled have high GC content (>50%) but three species in the Sinensis group have ∼30% GC content in plastomes, similar to most vascular plants; (7) the Sinensis group is monophyletic, includes at least two subgroups, and has the smallest plastomes in land plants except some parasitic plants, and their plastomes do not contain any tRNAs; (8) the younger lineages in Selaginella tend to have higher GC content, whereas the older lineages tend to have lower GC content; and (9) because of incomplete genomic data and abnormal structures or some unknown reasons, even the concatenated plastomes could not well resolve the phylogenetic relationships in Selaginella with confidence, highlighting the difficulty in resolving the phylogeny and evolution of this particularly important land plant lineage.
Collapse
Affiliation(s)
- Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650091, China
| | - Jing Zhao
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China
| | - Jian-Jun Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650091, China
| | | | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Li-Bing Zhang
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Sadamitsu A, Inoue Y, Sakakibara K, Tsubota H, Yamaguchi T, Deguchi H, Nishiyama T, Shimamura M. The complete plastid genome sequence of the enigmatic moss, Takakia lepidozioides (Takakiopsida, Bryophyta): evolutionary perspectives on the largest collection of genes in mosses and the intensive RNA editing. PLANT MOLECULAR BIOLOGY 2021; 107:431-449. [PMID: 34817767 DOI: 10.1007/s11103-021-01214-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Complete chloroplast genome sequence of a moss, Takakia lepidozioides (Takakiopsida) is reported. The largest collection of genes in mosses and the intensive RNA editing were discussed from evolutionary perspectives. We assembled the entire plastid genome sequence of Takakia lepidozioides (Takakiopsida), emerging from the first phylogenetic split among extant mosses. The genome sequences were assembled into a circular molecule 149,016 bp in length, with a quadripartite structure comprising a large and a small single-copy region separated by inverted repeats. It contained 88 genes coding for proteins, 32 for tRNA, four for rRNA, two open reading frames, and at least one pseudogene (tufA). This is the largest number of genes of all sequenced plastid genomes in mosses and Takakia is the only moss that retains the seven coding genes ccsA, cysA, cysT, petN rpoA, rps16 and trnPGGG. Parsimonious interpretation of gene loss suggests that the last common ancestor of bryophytes had all seven genes and that mosses lost at least three of them during their diversification. Analyses of the plastid transcriptome identified the extraordinary frequency of RNA editing with more than 1100 sites. We indicated a close correlation between the monoplastidy of vegetative tissue and the intensive RNA editing sites in the plastid genome in land plant lineages. Here, we proposed a hypothesis that the small population size of plastids in each vegetative cell of some early diverging land plants, including Takakia, might cause the frequent fixation of mutations in plastid genome through the intracellular genetic drift and that deleterious mutations might be continuously compensated by RNA editing during or following transcription.
Collapse
Affiliation(s)
- Atsushi Sadamitsu
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Yuya Inoue
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
- Hattori Botanical Laboratory, 6-1-26 Obi, Nichinan, Miyazaki, 889-2535, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hiromi Tsubota
- Miyajima Natural Botanical Garden, Graduate School of Integrated Sciences for Life, Hiroshima University, 1156-2, Mitsumaruko-yama, Miyajima-cho, Hatsukaichi, Hiroshima, 739-0543, Japan
| | - Tomio Yamaguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Hironori Deguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|