1
|
Khetarpal SA, Vitali C, Levin MG, Klarin D, Park J, Pampana A, Millar JS, Kuwano T, Sugasini D, Subbaiah PV, Billheimer JT, Natarajan P, Rader DJ. Endothelial lipase mediates efficient lipolysis of triglyceride-rich lipoproteins. PLoS Genet 2021; 17:e1009802. [PMID: 34543263 PMCID: PMC8483387 DOI: 10.1371/journal.pgen.1009802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/30/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.
Collapse
Affiliation(s)
- Sumeet A. Khetarpal
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Cecilia Vitali
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Derek Klarin
- Boston VA Healthcare System, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Park
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akhil Pampana
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John S. Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Takashi Kuwano
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Papasani V. Subbaiah
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Jeffrey T. Billheimer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel J. Rader
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,* E-mail:
| |
Collapse
|
2
|
Chung YC, Cui Y, Sumiyoshi T, Kim MG, Lee KH. Associations of fatty acids with cognition, psychopathology, and brain-derived neurotrophic factor levels in patients with first-episode schizophrenia and related disorders treated with paliperidone extended release. J Psychopharmacol 2017; 31:1556-1563. [PMID: 28946784 DOI: 10.1177/0269881117731169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study assessed fatty acid and brain-derived neurotrophic factor levels in patients with first-episode schizophrenia and related disorders. The levels of erythrocyte fatty acids and plasma brain-derived neurotrophic factor were measured at baseline and week 8 after treatment with paliperidone extended release. Cognitive function was evaluated using the Cognitive Assessment Interview and the cognition subscale of the Neuroleptic-Induced Deficit Syndrome Scale. There were significant decreases in stearic acid and nervonic acid levels and a significant increase in eicosapentaenoic acid levels after eight weeks. At week 8, cognition was positively associated with dihomo-γ-linolenic acid, linoleic acid, and eicosapentaenoic acid levels, and negatively associated with nervonic acid levels. Psychopathology was positively correlated with polyunsaturated fatty acid levels, and negatively correlated with saturated fatty acid levels at week 8. At both baseline and week 8, brain-derived neurotrophic factor level had a negative association with polyunsaturated fatty acids and a positive association with saturated fatty acids and monounsaturated fatty acids. The present study demonstrated that fatty acids have significant associations with cognition and psychopathology at week 8, and with brain-derived neurotrophic factor levels at both baseline and week 8.
Collapse
Affiliation(s)
- Young-Chul Chung
- 1 Department of Psychiatry, Chonbuk National University Hospital, Jeonju, Korea.,4 Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Korea
| | - Yin Cui
- 2 Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Korea.,4 Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Korea
| | - Tomiki Sumiyoshi
- 5 Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Min-Gul Kim
- 6 Clinical Pharmacology Unit, Chonbuk National University Hospital, Jeonju, Korea.,7 Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Korea
| | - Keon-Hak Lee
- 8 Department of Psychiatry, Maeumsarang Hospital, Wanju, Korea
| |
Collapse
|
3
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
4
|
Guadalupe-Grau A, Fernández-Elías VE, Ortega JF, Dela F, Helge JW, Mora-Rodriguez R. Effects of 6-month aerobic interval training on skeletal muscle metabolism in middle-aged metabolic syndrome patients. Scand J Med Sci Sports 2017; 28:585-595. [DOI: 10.1111/sms.12881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Affiliation(s)
- A. Guadalupe-Grau
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- ImFINE Research Group; Department of Health and Human Performance; Technical University of Madrid; Madrid Spain
| | - V. E. Fernández-Elías
- Exercise Physiology Laboratory at Toledo; University of Castilla-La Mancha; Toledo Spain
- Department of Sport Science; European University of Madrid; Madrid Spain
| | - J. F. Ortega
- Exercise Physiology Laboratory at Toledo; University of Castilla-La Mancha; Toledo Spain
| | - F. Dela
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - J. W. Helge
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - R. Mora-Rodriguez
- Exercise Physiology Laboratory at Toledo; University of Castilla-La Mancha; Toledo Spain
| |
Collapse
|
5
|
Amiran F, Shafaghat A, Shafaghatlonbar M. Omega-6 Content, Antioxidant and Antimicrobial Activities of Hexanic Extract from Prunus armeniaca L. Kernel from North-West Iran. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2015. [DOI: 10.1007/s40009-014-0284-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Das UN. Nutritional factors in the prevention and management of coronary artery disease and heart failure. Nutrition 2014; 31:283-91. [PMID: 25592005 DOI: 10.1016/j.nut.2014.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/26/2022]
Abstract
Nutritional factors such as magnesium, folic acid, vitamins B12 and B6, L-arginine, and polyunsaturated fatty acids (PUFAs) appear to be significantly beneficial for patients with coronary artery disease (CAD), and in the prevention and arresting the progression of HF and cardiac arrhythmias. Additionally, ingestion of adequate amounts of protein and maintaining normal concentrations of plasma albumin seem to be essential for these patients. These nutrients closely interact with the metabolism of L-arginine-nitric oxide (NO) system, essential fatty acids, and eicosanoids such that beneficial products such as NO, prostaglandin E1, prostacyclin, prostaglandin I3, lipoxins, resolvins, and protectins are generated and synthesis of proinflammatory cytokines is suppressed that results in platelet anti-aggregation, vasodilation, angiogenesis, and prevention of CAD, cardiac arrhythmias, and stabilization of HF. This implies that individuals at high risk for CAD, cardiac arrhythmias, and HF and those who have these diseases need to be screened for plasma levels of magnesium, folic acid, vitamins B12 and B6, L-arginine, NO, various PUFAs, lipoxin A4, resolvins, protectins, asymmetrical dimethylarginine (an endogenous inhibitor of NO), albumin, and various eicosanoids and cytokines and correct their abnormalities to restore normal physiology.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, Federal Way, WA, USA and Department of Medicine and BioScience Research Centre, Gayatri Vidya Parishad Hospital, Campus of GVP College of Engineering, Visakhapatnam, India.
| |
Collapse
|
7
|
Ho JCS, Storm P, Rydström A, Bowen B, Alsin F, Sullivan L, Ambite I, Mok KH, Northen T, Svanborg C. Lipids as tumoricidal components of human α-lactalbumin made lethal to tumor cells (HAMLET): unique and shared effects on signaling and death. J Biol Chem 2013; 288:17460-71. [PMID: 23629662 DOI: 10.1074/jbc.m113.468405] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance (13)C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein.
Collapse
Affiliation(s)
- James C S Ho
- Department of Microbiology, Immunology, and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Razzaghi H, Santorico SA, Kamboh MI. Population-Based Resequencing of LIPG and ZNF202 Genes in Subjects with Extreme HDL Levels. Front Genet 2012; 3:89. [PMID: 22723803 PMCID: PMC3375090 DOI: 10.3389/fgene.2012.00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/03/2012] [Indexed: 11/26/2022] Open
Abstract
Endothelial lipase (LIPG) and zinc finger protein 202 (ZNF202) are two pivotal genes in high density lipoprotein (HDL metabolism). We sought to determine their genetic contribution to variation in HDL-cholesterol levels by comprehensive resequencing of both genes in 235 individuals with high or low HDL-C levels. The selected subjects were 141 Whites (High HDL Group: n = 68, [Formula: see text] Low HDL Group: n = 73, [Formula: see text]) and 94 Hispanics (High HDL Group: n = 46, [Formula: see text] Low HDL Group: n = 48, [Formula: see text]). We identified a total of 185 and 122 sequence variants in LIPG and ZNF202, respectively. We found only two missense variants in LIPG (T111I and N396S) and two in ZNF202 (A154V and K259E). In both genes, there were several variants unique to either the low or high HDL group. For LIPG, the proportion of unique variants differed between the high and low HDL groups in both Whites (p = 0.022) and Hispanics (p = 0.017), but for ZNF202 this difference was observed only in Hispanics (p = 0.021). We also identified a common haplotype in ZNF202 among Whites that was significantly associated with the high HDL group (p = 0.013). These findings provide insights into the genetics of LIPG and ZNF202, and suggest that sequence variants occurring with high frequency in non-exonic regions may play a prominent role in modulating HDL-C levels in the general population.
Collapse
Affiliation(s)
- Hamid Razzaghi
- Division of Cardiology, Department of Medicine,
University of Colorado DenverAurora, CO, USA
| | - Stephanie A. Santorico
- Department of Mathematical and Statistical Sciences,
University of Colorado DenverDenver, CO, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, University of
PittsburghPittsburgh, PA, USA
| |
Collapse
|
9
|
Why and How Meet n-3 PUFA Dietary Recommendations? Gastroenterol Res Pract 2010; 2011:364040. [PMID: 21197079 PMCID: PMC3004387 DOI: 10.1155/2011/364040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/20/2010] [Accepted: 10/09/2010] [Indexed: 01/12/2023] Open
Abstract
Obesity and the metabolic syndrome are systemic inflammatory diseases reaching epidemic proportions. Contemporary changes in human nutrition occurred characterized by increased consumption of fat and of vegetable oils rich in n-6 polyunsaturated fatty acids (PUFAs) together with decrease in n-3 PUFA-rich foods, resulting in an n-6/n-3 ratio of 10–20/1 in Western diet for a ratio around 1/1 in the diet of our ancestors. The literature provides compelling evidence for the health benefit of n-3 PUFA consumption on inflammation and metabolic syndrome prevention and treatment. Such evidence led to the establishment of comprehensive recommendations. However, we show here that, both in collective catering proposed to children and in hospital diet, it is not straightforward to meet such recommendations. Willingness of governments to institute changes, with accountable decisions on catering, nutritional education, and food processing, is required to face our neglected responsibility in promoting balanced diet and consumption of foods rich in essential nutrients in the general population.
Collapse
|
10
|
Poprzecki S, Zajac A, Chalimoniuk M, Waskiewicz Z, Langfort J. Modification of blood antioxidant status and lipid profile in response to high-intensity endurance exercise after low doses of omega-3 polyunsaturated fatty acids supplementation in healthy volunteers. Int J Food Sci Nutr 2009; 60 Suppl 2:67-79. [PMID: 19468948 DOI: 10.1080/09637480802406161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We investigated whether endurance exercise might modify the blood antioxidant status and lipid profile after omega-3 fatty acid supplementation. Two groups of healthy, fit males performed 1 h of exercise with a constant work load corresponding to 60% of their individual VO(2 max) and various pedaling rates (45 min-60 rev/min followed by a maximal rate), before and after receiving, over 6 weeks, omega-3 fatty acids in a daily dose of 1.3 g or placebo. The resting concentration of triglycerides decreased after omega-3 fatty acid consumption. In response to endurance exercise, the superoxide dismutase activity markedly decreased in sedentary control subjects. This effect was partially protected by omega-3 fatty acid consumption. Supplementation tended to increase atalase activity in response to exercise, and this activity was significantly higher after 1 h of recovery. We conclude that the beneficial effect of omega-3 fatty acid supplementation during endurance exercise may be due to the activation of the superoxide dismutase and catalase pathways.
Collapse
Affiliation(s)
- Stanisław Poprzecki
- Department of Biochemistry, Academy of Physical Education in Katowice, Katowice, Poland
| | | | | | | | | |
Collapse
|
11
|
Abstract
Cardioprotective action of omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acid in fish and α-linolenic acid in plants was demonstrated in primary and secondary clinical trials. Fish oil therapy causes a marked decrease in serum triacylglycerol and very low density lipoprotein levels and increases moderately high density lipoprotein levels without any adverse effects. Omega-3 fatty acids decrease slightly, but significantly blood pressure, enhance endothelial function, they have anti-aggregator, anti-thrombotic and anti-inflammatory effects as well. These beneficial effects are in connection with modification of gene transcription levels of some key molecules such as nuclear factor-κB and sterol element binding receptor protein-1c, which regulate for example expression of adhesion molecules or several receptors involved in triglyceride synthesis (hepatocyte X receptor, hepatocyte nuclear factor 4α, farnesol X receptor, and peroxisome proliferator-activated receptors). On the basis of these observations, the supplementation of the diet with omega-3 fatty acids (fish, fish oil, linseed, and linseed oil or canola oil) is advisable in primary and secondary prevention.
Collapse
Affiliation(s)
- Zsuzsa Varga
- Debreceni Egyetem Orvos- és Egészségtudományi Centrum, Általános Orvostudományi Kar Belgyógyászati Intézet, I. Belgyógyászati Klinika Debrecen Nagyerdei krt. 98. 4012
| |
Collapse
|
12
|
Lucas A, Grynberg A, Lacour B, Goirand F. Dietary n-3 polyunsaturated fatty acids and endothelium dysfunction induced by lysophosphatidylcholine in Syrian hamster aorta. Metabolism 2008; 57:233-40. [PMID: 18191054 DOI: 10.1016/j.metabol.2007.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
This study investigated the influence of an eicosapentaenoic acid (EPA)- or a docosahexaenoic acid (DHA)-supplemented diet on the deleterious effects of lysophosphatidylcholine (LPC) on endothelium-dependent vasorelaxation of Golden Syrian hamster thoracic aorta. In a second step, LPC-modulated phospholipase A(2) (PLA(2))-derived ways of relaxation were investigated. Golden Syrian hamsters were fed for 6 weeks with a control diet or an EPA- or DHA-supplemented diet. Aortic fatty acid composition was analyzed by gas chromatography. Aortic rings were incubated for 20 minutes with LPC before constructing cumulative concentration-response curves for acetylcholine (ACh; 3 nmol/L-30 micromol/L) or sodium nitroprusside (3 nmol/L-30 micromol/L). The EPA- or DHA-supplemented diet increased n-3 polyunsaturated fatty acids in aortic fatty acids content because of the increase of EPA or DHA content, respectively, and decreased arachidonic acid aortic content. Lysophosphatidylcholine (1, 10, 15, and 20 micromol/L) induced a concentration-dependent inhibition of ACh-induced relaxation of preconstricted aortic rings in the control group, but did not influence sodium nitroprusside-induced aortic relaxation. The DHA- or EPA-supplemented diet worsened LPC (20 micromol/L) inhibitory effects on ACh-induced vasorelaxation. In the control diet group, ACh-induced relaxation was abolished by the nitric oxide synthase inhibitor (l-N(G)-nitro-arginine methyl ester; 100 micromol/L), whether LPC was added or not. The ACh-induced vasorelaxation was partially inhibited by PLA(2) inhibitors methyl arachidonyl fluorophosphonate (25 micromol/L) and arachidonyl trifluoromethyl ketone (20 micromol/L) as well as by the combination of 2 Ca(2+)-dependent potassium (K(Ca)) channel inhibitors charybdotoxin (0.1 micromol/L) plus apamin (0.3 micromol/L). In the presence of LPC (20 micromol/L), ACh-induced vasorelaxation was abolished by these inhibitors. These effects were not influenced by DHA or EPA diet. Our results suggested that EPA- or DHA-supplemented diet did not exhibit any beneficial effect against LPC-induced inhibition of endothelium-dependent aortic relaxation in Golden Syrian hamsters. These LPC effects were associated in our study not only with an inhibition of nitric oxide-dependent vasorelaxation, but also with a concomitant activation of a compensatory vasorelaxant pathway depending both on PLA(2) metabolites and on K(Ca) channel opening.
Collapse
|
13
|
Das UN. Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer's disease--but how and why? Prostaglandins Leukot Essent Fatty Acids 2008; 78:11-9. [PMID: 18054217 DOI: 10.1016/j.plefa.2007.10.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/18/2007] [Accepted: 10/21/2007] [Indexed: 01/14/2023]
Abstract
Low blood folate and raised homocysteine concentrations are associated with poor cognitive function. Folic acid supplementation improves cognitive function. Folic acid enhances the plasma concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). EPA, DHA, and arachidonic acid (AA) are of benefit in dementia and Alzheimer's disease by up-regulating gene expression concerned with neurogenesis, neurotransmission and connectivity, improving endothelial nitric oxide (eNO) generation, enhancing brain acetylcholine levels, and suppressing the production of pro-inflammatory cytokines. EPA, DHA, and AA also form precursors to anti-inflammatory compounds such as lipoxins, resolvins, and neuroprotectin D1 (NPD1) that protect neurons from the cytotoxic action of various noxious stimuli. Furthermore, various neurotrophins and statins enhance the formation of NPD1 and thus, protect neurons from oxidative stress and prevent neuronal apoptosis Folic acid improves eNO generation, enhances plasma levels of EPA/DHA and thus, could augment the formation of NPD1. These results suggest that a combination of EPA, DHA, AA and folic acid could be of significant benefit in dementia, depression, and Alzheimer's disease and improve cognitive function.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road #321, Shaker Heights, OH 44120, USA.
| |
Collapse
|
14
|
Abstract
Essential fatty acids (EFAs), linoleic acid (LA), and alpha-linolenic acid (ALA) are essential for humans, and are freely available in the diet. Hence, EFA deficiency is extremely rare in humans. To derive the full benefits of EFAs, they need to be metabolized to their respective long-chain metabolites, i.e., dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) from LA; and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from ALA. Some of these long-chain metabolites not only form precursors to respective prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), but also give rise to lipoxins (LXs) and resolvins that have potent anti-inflammatory actions. Furthermore, EFAs and their metabolites may function as endogenous angiotensin-converting enzyme and 3-hdroxy-3-methylglutaryl coenzyme A reductase inhibitors, nitric oxide (NO) enhancers, anti-hypertensives, and anti-atherosclerotic molecules. Recent studies revealed that EFAs react with NO to yield respective nitroalkene derivatives that exert cell-signaling actions via ligation and activation of peroxisome proliferator-activated receptors. The metabolism of EFAs is altered in several diseases such as obesity, hypertension, diabetes mellitus, coronary heart disease, schizophrenia, Alzheimer's disease, atherosclerosis, and cancer. Thus, EFAs and their derivatives have varied biological actions and seem to be involved in several physiological and pathological processes.
Collapse
|
15
|
Abe E, Hayashi Y, Hama Y, Hayashi M, Inagaki M, Ito M. A Novel Phosphatidylcholine Which Contains Pentadecanoic Acid at sn-1 and Docosahexaenoic Acid at sn-2 in Schizochytrium sp. F26-b. ACTA ACUST UNITED AC 2006; 140:247-53. [PMID: 16829536 DOI: 10.1093/jb/mvj145] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3)-containing phospholipids are a ubiquitous component of the central nervous system and retina, however their physiological and pharmacological functions have not been fully elucidated. Here, we report a novel DHA-containing phosphatidylcholine (PC) in a marine single cell eukaryote, Schizochytrium sp. F26-b. Interestingly, 31.8% of all the fatty acid in F26-b is DHA, which is incorporated into triacylglycerols and various phospholipids. In phospholipids, DHA was found to make up about 50% of total fatty acid. To identify phospholipid species containing DHA, the fraction of phospholipids from strain F26-b was subjected to normal phase high-performance liquid chromatography (HPLC). It was found that DHA was incorporated into PC, lyso-PC, phosphatidylethanolamine, and phosphatidylinositol. The major DHA-containing phospholipid was PC in which 32.5% of the fatty acid was DHA. The structure of PC was analyzed further by phospholipase A2 treatment, fast atom bombardment mass spectrometry, and 1H- and 13C-NMR after purification of the PC with reverse phase HPLC. Collectively, it was clarified that the major PC contains pentadecanoic acid (C15:0) at sn-1 and DHA at sn-2; the systematic name of this novel PC is therefore "1-pentadecanoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine."
Collapse
Affiliation(s)
- Eriko Abe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenviromental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581
| | | | | | | | | | | |
Collapse
|