1
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
2
|
Tang W, Wang HJ, Luo SY, Zhang SY, Xie H, Chen HQ, Wang CH, Zhang Z. Lipid Alterations in Chronic Nonspecific Low Back Pain in the Chinese Population: A Metabolomic and Lipidomic Study. Bioengineering (Basel) 2024; 11:1114. [PMID: 39593774 PMCID: PMC11591451 DOI: 10.3390/bioengineering11111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic nonspecific low back pain (cNLBP) accounts for approximately 90% of low back pain cases, affecting 65-80% of the population and significantly impacting life quality and productivity. This condition also leads to substantial financial burden. Although there have been advancements, a comprehensive understanding of the underlying etiology of cNLBP remains elusive, resulting in less than optimal treatment outcomes. This study aimed to examine the correlation between lipid variations and the development of cNLBP. The cohort consisted of 26 healthy volunteers (HV group) and 30 cNLBP patients, with an assessment of metabolites and lipid composition in both groups. Metabolomic results revealed significant alterations in lipid-associated metabolites between the HV and cNLBP groups. Subsequent lipid analysis revealed that monoacylglycerols (MAGs) increased approximately 1.2-fold (p = 0.016), diacylglycerols (DAGs) increased approximately 1.4-fold (p = 0.0003), and phosphatidylserine (PS) increased approximately 1.4-fold (p = 0.011). In contrast, triacylglycerol (TAG) decreased to about 0.7-fold (p = 0.035) in the cNLBP group compared to the HV group. The contrasting trends in MAG/DAG and TAG levels indicated that the imbalance between MAG/DAG and TAG may have an impact on the development of cNLBP. This study has provided new insights into the relationship between the progression of cNLBP and specific lipids, suggesting that these lipids could serve as therapeutic targets for cNLBP.
Collapse
Affiliation(s)
- Wen Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Hong-Jiang Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Su-Ying Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Si-Yun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Hao Xie
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Hua-Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Chu-Huai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Zhou Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| |
Collapse
|
3
|
Trindade-da-Silva CA, Yang J, Fonseca F, Pham H, Napimoga MH, Abdalla HB, Aver G, De Oliveira MJA, Hammock BD, Clemente-Napimoga JT. Eicosanoid profiles in an arthritis model: Effects of a soluble epoxide hydrolase inhibitor. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159432. [PMID: 37984607 PMCID: PMC10842726 DOI: 10.1016/j.bbalip.2023.159432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Rheumatoid arthritis is a common systemic inflammatory autoimmune disease characterized by damage to joints, inflammation and pain. It is driven by an increase of inflammatory cytokines and lipids mediators such as prostaglandins. Epoxides of polyunsaturated fatty acids (PUFAs) are lipid chemical mediators in a group of regulatory compounds termed eicosanoids. These epoxy fatty acids (EpFA) have resolutive functions but are rapidly metabolized by the soluble epoxide hydrolase enzyme (sEH) into the corresponding diols. The pharmacological inhibition of sEH stabilizes EpFA from hydrolysis, improving their half-lives and biological effects. These anti-inflammatory EpFA, are analgesic in neuropathic and inflammatory pain conditions. Nonetheless, inhibition of sEH on arthritis and the resulting effects on eicosanoids profiles are little explored despite the physiological importance. In this study, we investigated the effect of sEH inhibition on collagen-induced arthritis (CIA) and its impact on the plasma eicosanoid profile. We measured the eicosanoid metabolites by LC-MS/MS-based lipidomic analysis. The treatment with a sEH inhibitor significantly modulated 11 out of 69 eicosanoids, including increased epoxides 12(13)-EpODE, 12(13)-EpOME, 13-oxo-ODE, 15-HEPE, 20-COOH-LTB4 and decreases several diols 15,6-DiHODE, 12,13-DiHOME, 14,15-DiHETrE, 5,6-DiHETrE and 16,17-DiHDPE. Overall the inhibition of sEH in the rheumatoid arthritis model enhanced epoxides generally considered anti-inflammatory or resolutive mediators and decreased several diols with inflammatory features. These findings support the hypothesis that inhibiting the sEH increases systemic EpFA levels, advancing the understanding of the impact of these lipid mediators as therapeutical targets.
Collapse
Affiliation(s)
- Carlos Antonio Trindade-da-Silva
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil; Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA; EicOsis LLC, Davis, CA, USA
| | - Flavia Fonseca
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Hoang Pham
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil
| | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil
| | - Geanpaolo Aver
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil
| | - Márcio José Alves De Oliveira
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, Brazil
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA; EicOsis LLC, Davis, CA, USA
| | | |
Collapse
|
4
|
da Costa Souza F, Grodzki ACG, Morgan RK, Zhang Z, Taha AY, Lein PJ. Oxidized linoleic acid metabolites regulate neuronal morphogenesis in vitro. Neurochem Int 2023; 164:105506. [PMID: 36758902 PMCID: PMC10495953 DOI: 10.1016/j.neuint.2023.105506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Linoleic acid (LA, 18:2n-6) is an essential nutrient for optimal infant growth and brain development. The effects of LA in the brain are thought to be mediated by oxygenated metabolites of LA known as oxidized LA metabolites (OXLAMs), but evidence is lacking to directly support this hypothesis. This study investigated whether OXLAMs modulate key neurodevelopmental processes including axon outgrowth, dendritic arborization, cell viability and synaptic connectivity. Primary cortical neuron-glia co-cultures from postnatal day 0-1 male and female rats were exposed for 48h to the following OXLAMs: 1) 13-hydroxyoctadecadienoic acid (13-HODE); 2) 9-hydroxyoctadecadienoic acid (9-HODE); 3) 9,10-dihydroxyoctadecenoic acid (9,10-DiHOME); 4) 12(13)-epoxyoctadecenoic acid (12(13)-EpOME); 5) 9,10,13-trihydroxyoctadecenoic acid (9,10,13-TriHOME); 6) 9-oxo-octadecadienoic acid (9-OxoODE); and 7) 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME). Axonal outgrowth, evaluated by Tau-1 immunostaining, was increased by 9-HODE, but decreased by 12,13-DiHOME in male but not female neurons. Dendrite arborization, evaluated by MAP2B-eGFP expression, was affected by 9-HODE, 9-OxoODE, and 12(13)-EpOME in male neurons and, by 12(13)-EpOME in female neurons. Neither cell viability nor synaptic connectivity were significantly altered by OXLAMs. Overall, this study shows select OXLAMs modulate neuron morphology in a sex-dependent manner, with male neurons being more susceptible.
Collapse
Affiliation(s)
- Felipe da Costa Souza
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Ana Cristina G Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Rhianna K Morgan
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Quaranta A, Revol-Cavalier J, Wheelock CE. The octadecanoids: an emerging class of lipid mediators. Biochem Soc Trans 2022; 50:1569-1582. [PMID: 36454542 PMCID: PMC9788390 DOI: 10.1042/bst20210644] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023]
Abstract
Oxylipins are enzymatic and non-enzymatic metabolites of mono- or polyunsaturated fatty acids that encompass potent lipid mediators including the eicosanoids and docosanoids. Previously considered of low interest and often dismissed as 'just fat', octadecanoid oxylipins have only recently begun to be recognized as lipid mediators in humans. In the last few years, these compounds have been found to be involved in the mediation of multiple biological processes related to nociception, tissue modulation, cell proliferation, metabolic regulation, inflammation, and immune regulation. At the same time, the study of octadecanoids is hampered by a lack of standardization in the field, a paucity of analytical standards, and a lack of domain expertise. These issues have collectively limited the investigation of the biosynthesis and bioactivity of octadecanoids. Here, we present an overview of the primary enzymatic pathways for the oxidative metabolism of 18-carbon fatty acids in humans and of the current knowledge of the major biological activity of the resulting octadecanoids. We also propose a systematic nomenclature system based upon that used for the eicosanoids in order to avoid ambiguities and resolve multiple designations for the same octadecanoid. The aim of this review is to provide an initial framework for the field and to assist in its standardization as well as to increase awareness of this class of compounds in order to stimulate research into this interesting group of lipid mediators.
Collapse
Affiliation(s)
- Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Revol-Cavalier
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Larodan Research Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
6
|
Faurot KR, Cole WR, MacIntosh BA, Dunlap M, Moore CB, Roberson B, Guerra M, Domenichiello AF, Palsson O, Rivera W, Nothwehr A, Arrieux J, Russell K, Jones C, Werner JK, Clark R, Diaz-Arrastia R, Suchindran C, Mann JD, Ramsden CE, Kenney K. Targeted dietary interventions to reduce pain in persistent post-traumatic headache among service members: Protocol for a randomized, controlled parallel-group trial. Contemp Clin Trials 2022; 119:106851. [PMID: 35842107 PMCID: PMC9662694 DOI: 10.1016/j.cct.2022.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Post-traumatic headache (PTH) is common after traumatic brain injury (TBI), especially among active-duty service members (SMs), affecting up to 35% of patients with chronic TBI. Persistent PTH is disabling and frequently unresponsive to treatment and is often migrainous. Here, we describe a trial assessing whether dietary modifications to increase n-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and reduce n-6 linoleic acid (LA), will alter nociceptive lipid mediators and result in clinical improvements in persistent PTH. METHODS This prospective, randomized, controlled trial tests the efficacy, safety, and biochemical effects of targeted, controlled alterations in dietary n-3 and n-6 fatty acids in 122 adult SMs and military healthcare beneficiaries with diagnosed TBI associated with actively managed persistent frequent (>8 /month) PTH with migraine. Following a 4-week baseline, participants are randomized to one of two equally intensive dietary regimens for 12 additional weeks: 1) increased n-3 EPA + DHA with low n-6 LA (H3L6); 2) usual US dietary content of n-3 and n-6 fatty acids (Control). During the intervention, participants receive diet arm-specific study oils and foods sufficient for 75% of caloric needs and comprehensive dietary counseling. Participants complete daily headache diaries throughout the intervention. Clinical outcomes, including the Headache Impact Test (HIT-6), headache hours per day, circulating blood fatty acid levels, and bioactive metabolites, are measured pre-randomization and at 6 and 12 weeks. Planned primary analyses include pre-post comparisons of treatment groups on clinical measures using ANCOVA and mixed-effects models. Similar approaches to explore biochemical and exploratory clinical outcomes are planned. CLINICALTRIALS gov registration: NCT03272399.
Collapse
Affiliation(s)
- Keturah R Faurot
- Department of Physical Medicine & Rehabilitation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Wesley R Cole
- Department of Brain Injury Medicine, Intrepid Spirit Center, Womack Army Medical Center, Fort Bragg, NC, United States of America; Matthew Gfeller Center, Department of Exercise and Sport Science, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Beth A MacIntosh
- Metabolic and Nutrition Research Core, University of North Carolina Health, Chapel Hill, NC, United States of America
| | - Margaret Dunlap
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States of America; Traumatic Brain Injury Clinic, Neurology Department, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States of America
| | - Carol B Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Brittney Roberson
- Department of Physical Medicine & Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; The Geneva Foundation, Bethesda, MD, United States of America
| | - Melissa Guerra
- Department of Physical Medicine and Rehabilitation, South Texas Veterans Healthcare System, San Antonio, TX, United States of America
| | - Anthony F Domenichiello
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Olafur Palsson
- Department of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Wanda Rivera
- Traumatic Brain Injury Clinic, Neurology Department, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States of America; Intrepid Spirit Center, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States of America; Department of Neurology, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States of America
| | - Ann Nothwehr
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Jacques Arrieux
- Department of Brain Injury Medicine, Intrepid Spirit Center, Womack Army Medical Center, Fort Bragg, NC, United States of America
| | - Katie Russell
- Jack, Joseph, and Morton Mandel School of Applied Social Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Cecily Jones
- Kent State University, Kent, OH, United States of America
| | - J Kent Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Ruth Clark
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Ramon Diaz-Arrastia
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Chirayath Suchindran
- Department of Biostatistics, Gillings School of Global Public Health, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - J Douglas Mann
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States of America
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| |
Collapse
|
7
|
Oxidized linoleic acid metabolites maintain mechanical and thermal hypersensitivity during sub-chronic inflammatory pain. Biochem Pharmacol 2022; 198:114953. [PMID: 35149052 DOI: 10.1016/j.bcp.2022.114953] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Inflammatory pain serves as a protective defense mechanism which becomes pathological when it turns into chronic inflammatory pain. This transition is mediated by a variety of peripheral mediators that sensitize nociceptors and increase pain perception in sensory neurons. Besides cytokines, chemokines and growth factors, accumulating evidence shows that oxidized lipids, such as eicosanoids and oxidized linoleic acid metabolites, contribute to this sensitization process. Most notably, the oxidized linoleic acid metabolite and partial TRPV1 agonist 9-HODE (hydroxyoctadecadienoic acid) was shown to be involved in this sensitization process. However, it is still unknown how some of the oxidized linoleic acid metabolites are synthesized in the inflammatory environment and in which phase of inflammation they become relevant. Here we show that the concentrations of oxidized linoleic acid metabolites, especially 9-HODE and 13-HODE, are significantly increased in inflamed paw tissue and the corresponding dorsal root ganglia in the sub-chronic phase of inflammation. Surprisingly, classical inflammatory lipid markers, such as prostaglandins were at basal levels in this phase of inflammation. Moreover, we revealed the cell type specific synthesis pathways of oxidized linoleic acid metabolites in primary macrophages, primary neutrophils and dorsal root ganglia. Finally, we show that blocking the most elevated metabolites 9-HODE and 13-HODE at the site of inflammation in the sub-chronic phase of inflammation, leads to a significant relief of mechanical and thermal hypersensitivity in vivo. In summary, these data offer an approach to specifically target oxidized linoleic acid metabolites in the transition of acute inflammatory pain to chronic inflammatory pain.
Collapse
|
8
|
Bahrampour N, Rasaei N, Gholami F, Clark CCT. The Association Between Dietary Energy Density and Musculoskeletal Pain in Adult Men and Women. Clin Nutr Res 2022; 11:110-119. [PMID: 35559001 PMCID: PMC9065393 DOI: 10.7762/cnr.2022.11.2.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Niki Bahrampour
- Department of Nutrition, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran 1477893855, Iran
| | - Niloufar Rasaei
- Department of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Fatemeh Gholami
- Department of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
9
|
Field R, Pourkazemi F, Turton J, Rooney K. Dietary Interventions Are Beneficial for Patients with Chronic Pain: A Systematic Review with Meta-Analysis. PAIN MEDICINE 2020; 22:694-714. [DOI: 10.1093/pm/pnaa378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
The standard Western diet is high in processed hyperpalatable foods that displace nutrient-dense whole foods, leading to inflammation and oxidative stress. There is limited research on how these adverse metabolic drivers may be associated with maladaptive neuroplasticity seen in chronic pain and whether this could be attenuated by a targeted nutritional approach. The aim of this study was to review the evidence for whole-food dietary interventions in chronic pain management.
Method
A structured search of eight databases was performed up to December 2019. Two independent reviewers screened studies and evaluated risk of bias by using the National Institutes of Health assessment tool for controlled or pre–post studies and the Joanna Briggs checklist for case reports. A meta-analysis was performed in Review Manager.
Results
Forty-three studies reporting on 48 chronic pain groups receiving a whole-food dietary intervention were identified. These included elimination protocols (n = 11), vegetarian/vegan diets (n = 11), single-food changes (n = 11), calorie/macronutrient restriction (n = 8), an omega-3 focus (n = 5), and Mediterranean diets (n = 2). A visual analog scale was the most commonly reported pain outcome measure, with 17 groups reporting a clinically objective improvement (a two-point or 33% reduction on the visual analog scale). Twenty-seven studies reported significant improvement on secondary metabolic measures. Twenty-five groups were included in a meta-analysis that showed a significant finding for the effect of diet on pain reduction when grouped by diet type or chronic pain type.
Conclusion
There is an overall positive effect of whole-food diets on pain, with no single diet standing out in effectiveness. This suggests that commonalities among approaches (e.g., diet quality, nutrient density, weight loss) may all be involved in modulating pain physiology. Further research linking how diet can modulate physiology related to pain (such as inflammation, oxidative stress, and nervous system excitability) is required.
Collapse
Affiliation(s)
- Rowena Field
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Fereshteh Pourkazemi
- Discipline of Physiotherapy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Kieron Rooney
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Sisignano M, Steinhilber D, Parnham MJ, Geisslinger G. Exploring CYP2J2: lipid mediators, inhibitors and therapeutic implications. Drug Discov Today 2020; 25:1744-1753. [DOI: 10.1016/j.drudis.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/30/2022]
|
11
|
Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020; 10:metabo10060231. [PMID: 32503331 PMCID: PMC7345237 DOI: 10.3390/metabo10060231] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, high-throughput lipid profiling has contributed to understand the biological, physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important cell and systemic processes are mediated by lipids including compartmentalization, signaling and energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry, sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural diversity of lipids imposes a constrain in the type and amount of lipids extracted. Differences in extraction yield across lipid classes can induce a bias on down-stream analysis and outcomes. This review aims to summarize current lipid extraction techniques used for untargeted and targeted studies based on mass spectrometry. Considerations, applications, and limitations of these techniques are discussed when used to extract lipids in complex biological matrices, such as tissues, biofluids, foods, and microorganisms.
Collapse
|
12
|
Schäfer SM, Sendetski M, Angioni C, Nüsing R, Geisslinger G, Scholich K, Sisignano M. The omega-3 lipid 17,18-EEQ sensitizes TRPV1 and TRPA1 in sensory neurons through the prostacyclin receptor (IP). Neuropharmacology 2020; 166:107952. [DOI: 10.1016/j.neuropharm.2020.107952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
|
13
|
Fuchs D, Tang X, Johnsson AK, Dahlén SE, Hamberg M, Wheelock CE. Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent process. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158611. [PMID: 31918007 DOI: 10.1016/j.bbalip.2020.158611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/04/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022]
Abstract
Trihydroxyoctadecenoic acids (TriHOMEs) are linoleic acid-derived lipid mediators reported to be dysregulated in obstructive lung disease. In contrast to many other oxylipins, TriHOME biosynthesis in humans is still poorly understood. The association of TriHOMEs with inflammation prompted the current investigation into the ability of human granulocytes to synthesize the 16 different 9,10,13-TriHOME and 9,12,13-TriHOME isomers and of the TriHOME biosynthetic pathway. Following incubation with linoleic acid, eosinophils and (to a lesser extent) the mast cell line LAD2, but not neutrophils, formed TriHOMEs. Stereochemical analysis revealed that TriHOMEs produced by eosinophils predominantly evidenced the 13(S) configuration, suggesting 15-lipoxygenase (15-LOX)-mediated synthesis. TriHOME formation was blocked following incubation with the 15-LOX inhibitor BLX-3887 and was shown to be largely independent of soluble epoxide hydrolase and cytochrome P450 activities. TriHOME synthesis was abolished when linoleic acid was replaced with 13-HODE, but increased in incubations with 13-HpODE, indicating the intermediary role of epoxy alcohols in TriHOME formation. In contrast to eosinophils, LAD2 cells formed TriHOMEs having predominantly the 13(R) configuration, demonstrating that there are multiple synthetic routes for TriHOME formation. These findings provide for the first-time insight into the synthetic route of TriHOMEs in humans and expand our understanding of their formation in inflammatory diseases.
Collapse
Affiliation(s)
- David Fuchs
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Karin Johnsson
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Hamberg
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Oehler B, Brack A, Blum R, Rittner HL. Pain Control by Targeting Oxidized Phospholipids: Functions, Mechanisms, Perspectives. Front Endocrinol (Lausanne) 2020; 11:613868. [PMID: 33569042 PMCID: PMC7868524 DOI: 10.3389/fendo.2020.613868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Within the lipidome oxidized phospholipids (OxPL) form a class of chemically highly reactive metabolites. OxPL are acutely produced in inflamed tissue and act as endogenous, proalgesic (pain-inducing) metabolites. They excite sensory, nociceptive neurons by activating transient receptor potential ion channels, specifically TRPA1 and TRPV1. Under inflammatory conditions, OxPL-mediated receptor potentials even potentiate the action potential firing rate of nociceptors. Targeting OxPL with D-4F, an apolipoprotein A-I mimetic peptide or antibodies like E06, specifically binding oxidized headgroups of phospholipids, can be used to control acute, inflammatory pain syndromes, at least in rodents. With a focus on proalgesic specificities of OxPL, this article discusses, how targeting defined substances of the epilipidome can contribute to mechanism-based therapies against primary and secondary chronic inflammatory or possibly also neuropathic pain.
Collapse
Affiliation(s)
- Beatrice Oehler
- Wolfson Center of Age-Related Diseases, IoPPN, Health and Life Science, King’s College London, London, United Kingdom
- Department of Anesthesiology, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
- *Correspondence: Heike L. Rittner,
| |
Collapse
|
15
|
Osthues T, Sisignano M. Oxidized Lipids in Persistent Pain States. Front Pharmacol 2019; 10:1147. [PMID: 31680947 PMCID: PMC6803483 DOI: 10.3389/fphar.2019.01147] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy, nerve injuries, or diseases like multiple sclerosis can cause pathophysiological processes of persistent and neuropathic pain. Thereby, the activation threshold of ion channels is reduced in peripheral sensory neurons to normally noxious stimuli like heat, cold, acid, or mechanical due to sensitization processes. This leads to enhanced neuronal activity, which can result in mechanical allodynia, cold allodynia, thermal hyperalgesia, spontaneous pain, and may initiate persistent and neuropathic pain. The treatment options for persistent and neuropathic pain patients are limited; for about 50% of them, current medication is not efficient due to severe side effects or low response to the treatment. Therefore, it is of special interest to find additional treatment strategies. One approach is the control of neuronal sensitization processes. Herein, signaling lipids are crucial mediators and play an important role during the onset and maintenance of pain. As preclinical studies demonstrate, lipids may act as endogenous ligands or may sensitize transient receptor potential (TRP)-channels. Likewise, they can cause enhanced activity of sensory neurons by mechanisms involving G-protein coupled receptors and activation of intracellular protein kinases. In this regard, oxidized metabolites of the essential fatty acid linoleic acid, 9- and 13-hydroxyoctadecadienoic acid (HODE), their dihydroxy-metabolites (DiHOMEs), as well as epoxides of linoleic acid (EpOMEs) and of arachidonic acid (EETs), as well as lysophospholipids, sphingolipids, and specialized pro-resolving mediators (SPMs) have been reported to play distinct roles in pain transmission or inhibition. Here, we discuss the underlying molecular mechanisms of the oxidized linoleic acid metabolites and eicosanoids. Furthermore, we critically evaluate their role as potential targets for the development of novel analgesics and for the treatment of persistent or neuropathic pain.
Collapse
Affiliation(s)
- Tabea Osthues
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, Frankfurt, Germany
| |
Collapse
|
16
|
Cayer LGJ, Mendonça AM, Pauls SD, Winter T, Leng S, Taylor CG, Zahradka P, Aukema HM. Adipose tissue oxylipin profiles vary by anatomical site and are altered by dietary linoleic acid in rats. Prostaglandins Leukot Essent Fatty Acids 2019; 141:24-32. [PMID: 30661602 DOI: 10.1016/j.plefa.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022]
Abstract
Dietary PUFA and their effects on adipose tissue have been well studied, but oxylipins, the oxygenated metabolites of PUFA, have been sparsely studied in adipose tissue. To determine the oxylipin profile and to examine their potential importance in various adipose sites, female and male rats were provided control, high linoleic acid (LA), or high LA and high α-linolenic acid (LA + ALA) diets for six weeks. Analysis of gonadal (GAT), mesenteric (MAT), perirenal (PAT), and subcutaneous adipose tissues (SAT) revealed higher numbers of oxylipins in MAT and SAT, primarily due to 20-22 carbon cytochrome P450 oxylipins, as well as metabolites of cyclooxygenase derived oxylipins. LA oxylipins made up 75-96% of the total oxylipin mass and largely determined the total relative amounts between depots (GAT > MAT > PAT > SAT). However, when the two most abundant LA oxylipins (TriHOMEs) were excluded, MAT had the highest mass of oxylipins and exhibited the most sex differences. These differences existed despite comparable PUFA composition between depots. Dietary LA increased oxylipins derived from n-6 PUFA, and the addition of ALA generally returned n-6 PUFA oxylipins to levels similar to control and elevated some n-3 oxylipins. These data on oxylipin profiles in adipose depots from different anatomical sites and the effects of diet and sex provide fundamental knowledge that will aid future studies investigating the physiological effects of adipose tissue.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Anne M Mendonça
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; School of Medicine, Federal University of Uberlândia, Brazil
| | - Samantha D Pauls
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|