1
|
Leucine 434 is essential for docosahexaenoic acid-induced augmentation of L-glutamate transporter current. J Biol Chem 2022; 299:102793. [PMID: 36509140 PMCID: PMC9823230 DOI: 10.1016/j.jbc.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytic excitatory amino acid transporter 2 (EAAT2) plays a major role in removing the excitatory neurotransmitter L-glutamate (L-Glu) from synaptic clefts in the forebrain to prevent excitotoxicity. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA, 22:6 n-3) enhance synaptic transmission, and their target molecules include EAATs. Here, we aimed to investigate the effect of DHA on EAAT2 and identify the key amino acid for DHA/EAAT2 interaction by electrophysiological recording of L-Glu-induced current in Xenopus oocytes transfected with EAATs, their chimeras, and single mutants. DHA transiently increased the amplitude of EAAT2 but tended to decrease that of excitatory amino acid transporter subtype 1 (EAAT1), another astrocytic EAAT. Single mutation of leucine (Leu) 434 to alanine (Ala) completely suppressed the augmentation by DHA, while mutation of EAAT1 Ala 435 (corresponding to EAAT2 Leu434) to Leu changed the effect from suppression to augmentation. Other polyunsaturated fatty acids (docosapentaenoic acid, eicosapentaenoic acid, arachidonic acid, and α-linolenic acid) similarly augmented the EAAT2 current and suppressed the EAAT1 current. Finally, our docking analysis suggested the most stable docking site is the lipid crevice of EAAT2, in close proximity to the L-Glu and sodium binding sites, suggesting that the DHA/Leu434 interaction might affect the elevator-like slide and/or the shapes of the other binding sites. Collectively, our results highlight a key molecular detail in the DHA-induced regulation of synaptic transmission involving EAATs.
Collapse
|
2
|
Emerging Role of Phospholipids and Lysophospholipids for Improving Brain Docosahexaenoic Acid as Potential Preventive and Therapeutic Strategies for Neurological Diseases. Int J Mol Sci 2022; 23:ijms23073969. [PMID: 35409331 PMCID: PMC9000073 DOI: 10.3390/ijms23073969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid (PUFA) essential for neural development, learning, and vision. Although DHA can be provided to humans through nutrition and synthesized in vivo from its precursor alpha-linolenic acid (ALA, 18:3n-3), deficiencies in cerebral DHA level were associated with neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. The aim of this review was to develop a complete understanding of previous and current approaches and suggest future approaches to target the brain with DHA in different lipids’ forms for potential prevention and treatment of neurodegenerative diseases. Since glycerophospholipids (GPs) play a crucial role in DHA transport to the brain, we explored their biosynthesis and remodeling pathways with a focus on cerebral PUFA remodeling. Following this, we discussed the brain content and biological properties of phospholipids (PLs) and Lyso-PLs with omega-3 PUFA focusing on DHA’s beneficial effects in healthy conditions and brain disorders. We emphasized the cerebral accretion of DHA when esterified at sn-2 position of PLs and Lyso-PLs. Finally, we highlighted the importance of DHA-rich Lyso-PLs’ development for pharmaceutical applications since most commercially available DHA formulations are in the form of PLs or triglycerides, which are not the preferred transporter of DHA to the brain.
Collapse
|
3
|
Kelaiditis CF, Gibson EL, Dyall SC. The effects of a high eicosapentaenoic acid multinutrient supplement on measures of stress, anxiety and depression in young adults: Study protocol for NutriMOOD, a randomised double-blind placebo-controlled trial. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102335. [PMID: 34461561 DOI: 10.1016/j.plefa.2021.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Anxiety disorders affect nearly 20% of young adults aged 18-29 years. First-line treatment for anxiety disorders comprises pharmacotherapy and Cognitive Behavioural Therapy, options often criticised for their low efficacy and safety. In contrast, fish-oil-based supplements comprising omega-3 polyunsaturated fatty acids and supporting nutrients are gaining recognition as safe and effective alternatives. Here we present the protocol for a randomised, double-blind, placebo-controlled trial investigating the effects of a high eicosapentaenoic acid multinutrient supplement on validated measures of anxiety and depression in healthy university students experiencing non-clinical levels of anxiety and depression. The primary outcome is improvement in anxiety compared to the placebo group assessed via the Generalised Anxiety Disorder Assessment-7 scale. The participants will be randomised to active treatment comprising a daily dose of 1125 mg eicosapentaenoic acid, 441 mg docosahexaenoic acid, 330 mg magnesium and 7.5 mg vitamin E, or placebo, for 24 weeks, and will complete validated questionnaires and tablet-based tasks sensitive to mood at baseline and end of intervention. Circulating fatty acids and key biomarkers will also be assessed. The students will be genotyped for polymorphisms thought to influence the relationship between long-chain omega-3 polyunsaturated fatty acids and affect. Trial registration; ClinicalTrials.gov, NCT04844034.
Collapse
Affiliation(s)
| | - E Leigh Gibson
- School of Psychology, University of Roehampton, London, UK
| | - Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| |
Collapse
|
4
|
Fairbairn P, Tsofliou F, Johnson A, Dyall SC. Effects of a high-DHA multi-nutrient supplement and exercise on mobility and cognition in older women (MOBILE): a randomised semi-blinded placebo-controlled study. Br J Nutr 2020; 124:1-10. [PMID: 32100647 DOI: 10.1017/s0007114520000719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is a complex interplay between mobility and cognition in older adults. We have previously shown that a high-DHA multi-nutrient supplement improves habitual walking speed, verbal memory and psychomotor response latency in older women. Exercise also improves mobility and cognition in older adults, and n-3 fatty acids and exercise share a range of overlapping biological effects. This study examined for the first time the effects of the high-DHA multi-nutrient supplement and aerobic exercise on mobility and cognition in older women. Women (mean age 67 (sd 8) years) were assigned to the following groups: multi-nutrient (1 g DHA, 160 mg EPA, 240 mg Ginkgo biloba, 60 mg phosphatidylserine, 20 mg d-α tocopherol, 1 mg folic acid and 20 µg vitamin B12 per d, n 13), multi-nutrient and exercise (spin class twice per week, n 14), exercise and placebo (n 12) or placebo (n 12). The multi-nutrient was given for 24 weeks and exercise for 12 weeks. No treatment effects were observed for the primary outcome, habitual walking speed. Improvements in verbal memory and executive function were seen for all treatments groups v. placebo (all, P < 0·05). Significant improvements in self-reported emotional well-being were seen with multi-nutrient and exercise groups v. placebo (P = 0·03). The results suggest that the high-DHA multi-nutrient supplement produces similar improvements in cognitive function to aerobic exercise, offering the intriguing prospect that supplementation may be able to mitigate some of the effects of low physical activity on cognitive function in the elderly.
Collapse
Affiliation(s)
- Paul Fairbairn
- Department of Rehabilitation and Sport Sciences, Bournemouth University, BournemouthBH1 3LT, UK
| | - Fotini Tsofliou
- Department of Rehabilitation and Sport Sciences, Bournemouth University, BournemouthBH1 3LT, UK
| | - Andrew Johnson
- Department of Psychology, Bournemouth University, BournemouthBH1 3LT, UK
| | - Simon C Dyall
- Department of Life Sciences, University of Roehampton, LondonSW15 5PU, UK
| |
Collapse
|
5
|
Fourrier C, Kropp C, Aubert A, Sauvant J, Vaysse C, Chardigny JM, Layé S, Joffre C, Castanon N. Rapeseed oil fortified with micronutrients improves cognitive alterations associated with metabolic syndrome. Brain Behav Immun 2020; 84:23-35. [PMID: 31731013 DOI: 10.1016/j.bbi.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/24/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022] Open
Abstract
Metabolic syndrome represents a major risk factor for severe comorbidities such as cardiovascular diseases or diabetes. It is also associated with an increased prevalence of emotional and cognitive alterations that in turn aggravate the disease and related outcomes. Identifying therapeutic strategies able to improve those alterations is therefore a major socioeconomical and public health challenge. We previously reported that both hippocampal inflammatory processes and neuronal plasticity contribute to the development of emotional and cognitive alterations in db/db mice, an experimental model of metabolic syndrome that displays most of the classical features of the syndrome. In that context, nutritional interventions with known impact on those neurobiological processes appear as a promising alternative to limit the development of neurobiological comorbidities of metabolic syndrome. We therefore tested here whether n-3 polyunsaturated fatty acids (n-3 PUFAs) associated with a cocktail of antioxidants can protect against the development of behavioral alterations that accompany the metabolic syndrome. Thus, this study aimed: 1) to evaluate if a diet supplemented with the plant-derived n-3 PUFA α-linolenic acid (ALA) and antioxidants (provided by n-3 PUFAs-rich rapeseed oil fortified with a mix of naturally constituting antioxidant micronutrients, including coenzyme Q10, tocopherol, and the phenolic compound canolol) improved behavioral alterations in db/db mice, and 2) to decipher the biological mechanisms underlying this behavioral effect. Although the supplemented diet did not improve anxiety-like behavior and inflammatory abnormalities, it reversed hippocampus-dependent spatial memory deficits displayed by db/db mice in a water maze task. It concomitantly changed subunit composition of glutamatergic AMPA and NMDA receptors in the hippocampus that has been shown to modulate synaptic function related to spatial memory. These data suggest that changes in local neuronal plasticity may underlie cognitive improvements in db/db mice fed the supplemented diet. The current findings might therefore provide valuable data for introducing new nutritional strategies for the treatment of behavioral complications associated with MetS.
Collapse
Affiliation(s)
- Célia Fourrier
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Camille Kropp
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Agnès Aubert
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Julie Sauvant
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Carole Vaysse
- ITERG, Institut des corps gras, 33600 Pessac, France
| | - Jean-Michel Chardigny
- INRA, Unité de Nutrition Humaine, CRNH Auvergne, Université Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Centre de Recherche INRA Bourgogne Franche Comté, 21065 Dijon, France
| | - Sophie Layé
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Corinne Joffre
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Nathalie Castanon
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| |
Collapse
|