1
|
Alam P. Functional annotations of ESTs of Stevia rebaudiana involved in abiotic stress signaling through computational approach. Saudi J Biol Sci 2021; 28:2602-2612. [PMID: 33911971 PMCID: PMC8071920 DOI: 10.1016/j.sjbs.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Stevia rebaudiana (Bertoni) is known as a natural sweetener plant to produced steviol glycosides. The steviol glycosides biosynthesis is limited in S. rebaudiana plants due to the alteration in the environmental circumstances such as drought, cold, salt and light. These environmental circumstances are a common side-effect in plants affecting the plant growth, metabolism and yield of secondary metabolites. Due to absence of complete genome annotations, the plant metabolites signaling is difficult in order to get the exact enzymatic flow to the product. In this article, we have analyzed the ESTs of S. rebaudiana and predicted their role in plant signaling in term of cis-regulatory elements, their biological function respect to abiotic stress. Further, the predicted abiotic stress responsive factors were also analyzed in order to predict the relevant genes or proteins function in comparison with the genome of Arabidopsis thaliana. Total 5,548 ESTs of stevia were retrieved from NCBI database. EST-contigs assembled from 5393 were 619 contigs and 2,894 singletons elements were identified by assembler program. Due to short expressed sequences related to singletons, it is excluded for further study. Further, retrieved ESTs were resulted in to 619 EST-contigs by using the clustering method. Out of 619, 15 contigs belongs to transcription factor families while 292 contigs, belongs to five enzyme classes. Out of 619 contigs, the 529 contigs showing the correct gene ontology in term of biological process (BP), molecular Functions (MF) and cellular component (CC). Further, these contigs were also screened for metabolic pathways analyses using KEG database. In this, 390 metabolic pathways and 67 involved for signal transduction were identified from 619 contigs. The co-expression analysis was revealed by gene investigators and STRING 10.0 with 0.40 correlations and 0.9 mutual connection. In projected PPI network, the recognized factors (WD40-like protein, MYB-HB like, AP2-EREBP, C2H2, Hap3/NF-YB, bHLH, C2C2-CO-like, CW-Zn, FHA-SMAD, Nin like, SBP3, TIFY, Tc-PD, Znf-B and bIP) belong to plant signaling and MAPK signaling pathways. These TFs introduce as a candidate genes responsive factors may lead to enhanced plant growth and metabolism by overexpression.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), 11942 Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
3
|
Sham A, Al-Ashram H, Whitley K, Iratni R, El-Tarabily KA, AbuQamar SF. Metatranscriptomic Analysis of Multiple Environmental Stresses Identifies RAP2.4 Gene Associated with Arabidopsis Immunity to Botrytis cinerea. Sci Rep 2019; 9:17010. [PMID: 31740741 PMCID: PMC6861241 DOI: 10.1038/s41598-019-53694-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023] Open
Abstract
In this study, we aimed to identify common genetic components during stress response responsible for crosstalk among stresses, and to determine the role of differentially expressed genes in Arabidopsis-Botrytis cinerea interaction. Of 1,554 B. cinerea up-regulated genes, 24%, 1.4% and 14% were induced by biotic, abiotic and hormonal treatments, respectively. About 18%, 2.5% and 22% of B. cinerea down-regulated genes were also repressed by the same stress groups. Our transcriptomic analysis indicates that plant responses to all tested stresses can be mediated by commonly regulated genes; and protein-protein interaction network confirms the cross-interaction between proteins regulated by these genes. Upon challenges to individual or multiple stress(es), accumulation of signaling molecules (e.g. hormones) plays a major role in the activation of downstream defense responses. In silico gene analyses enabled us to assess the involvement of RAP2.4 (related to AP2.4) in plant immunity. Arabidopsis RAP2.4 was repressed by B. cinerea, and its mutants enhanced resistance to the same pathogen. To the best of our knowledge, this is the first report demonstrating the role of RAP2.4 in plant defense against B. cinerea. This research can provide a basis for breeding programs to increase tolerance and improve yield performance in crops.
Collapse
Affiliation(s)
- Arjun Sham
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE
| | | | - Kenna Whitley
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE. .,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE.
| |
Collapse
|