1
|
Tüz MA, Türköz İ, Aydogan O, Gencer E, Aygün-Kaş FÖ, Hunerel O, Tüz Hİ. Tocilizumab and IVIG experience during the service follow-up in patients with severe COVID-19 pneumonia. Rev Inst Med Trop Sao Paulo 2025; 67:e28. [PMID: 40243800 PMCID: PMC11996030 DOI: 10.1590/s1678-9946202567028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Most SARS-CoV-2 infections are asymptomatic or cause only mild illness, but severe respiratory disease can develop, sometimes requiring oxygen support. Immunopathological damage resulting from an abnormal inflammatory response in patients with severe disease is known to be the main determinant of disease outcome. Studies show that anti-inflammatory therapies work best when used before widespread immunopathological damage has occurred. Similarly, it was thought that intravenous immunoglobulin (IVIG)-holding multiple immunomodulatory effects-would provide clinically favorable results, but recent studies suggest otherwise. Still, the literature shows few studies evaluating the efficacy of IVIG according to the time of administration and there are no studies comparing it with established treatments, such as tocilizumab. In this study, we aimed to evaluate the effects of early administration of tocilizumab and IVIG on clinical outcome in patients with severe COVID-19. Patients with progressive clinical and laboratory deterioration who received tocilizumab or IVIG between 07/2020 and 10/2020 in a public hospital ward were retrospectively evaluated. A total of 74 patients were identified, of whom 29 (39%) received IVIG only and 26 (35%) received tocilizumab only. As a result, patients with severe COVID-19 who received IVIG in early stages of the disease did not have better clinical outcomes regarding mortality, length of hospital stay and ICU admission compared to those who received tocilizumab. Moreover, there is no data to support the use of IVIG in COVID-19 patients with severe disease, as it is associated with more severe side effects and is more expensive than tocilizumab.
Collapse
Affiliation(s)
- Mehmet Ali Tüz
- Balikesir University, Medical Faculty, Infectious Diseases and Clinical Microbiology Department, Balikesir, Turkey
| | - İsmail Türköz
- Dörtyol State Hospital, Infectious Diseases and Clinical Microbiology Department, Hatay, Turkey
| | - Oytun Aydogan
- Uzunmehmet Chest and Occupational Diseases Hospital, Department of Chest Diseases, Zonguldak, Turkey
| | - Emine Gencer
- Private Kapadokya Hospital, Department of Chest Diseases, Nevşehir, Turkey
| | - Fadime Özge Aygün-Kaş
- Zonguldak Atatürk State Hospital, Infectious Diseases and Clinical Microbiology Department, Zonguldak, Turkey
| | - Oylum Hunerel
- Urla State Hospital, Department of Chest Diseases, İzmir, Turkey
| | - Hande İdil Tüz
- Balıkesir Atatürk City Hospital, Infectious Diseases and Clinical Microbiology Department, Balıkesir, Turkey
| |
Collapse
|
2
|
Lacina L, Kolář M, Pfeiferová L, Gál P, Smetana K. Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol 2024; 15:1403570. [PMID: 39676864 PMCID: PMC11638159 DOI: 10.3389/fimmu.2024.1403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
Collapse
Affiliation(s)
- Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc., Košice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| |
Collapse
|
3
|
Durán-Sotuela A, Vázquez-García J, Relaño-Fernández S, Balboa-Barreiro V, Fernández-Tajes J, Blanco FJ, Rego-Pérez I. An exploratory analysis of associations of genetic variation with the efficacy of tocilizumab in severe COVID-19 patients. A pharmacogenetic study based on next-generation sequencing. Front Pharmacol 2024; 15:1426826. [PMID: 39346556 PMCID: PMC11428153 DOI: 10.3389/fphar.2024.1426826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background In the context of the cytokine storm the takes place in severe COVID-19 patients, the Interleukin 6 (IL6) pathway emerges as one of the key pathways involved in the pathogenesis of this hyperinflammatory state. The strategy of blocking the inflammatory storm by targeting the IL6 is a promising therapy to mitigate mortality. The use of Tocilizumab was recommended by the World Health Organization (WHO) to treat severe COVID-19 patients. However, the efficacy of Tocilizumab is variable. We hypothesize that the genetic background could be behind the efficacy of Tocilizumab in terms of mortality. Methods We performed a targeted-next generation sequencing of 287 genes, of which 264 belong to a community panel of ThermoFisher for the study of genetic causes of primary immunodeficiency disorders, and 23 additional genes mostly related to inflammation, not included in the original community panel. This panel was sequenced in an initial cohort of 425 COVID-19 patients, of which 232 were treated with Tocilizumab and standard therapy, and 193 with standard therapy only. Selected genetic variants were genotyped by single base extension in additional 245 patients (95 treated with Tocilizumab and 150 non-treated with Tocilizumab). Appropriate statistical analyses and internal validation, including logistic regression models, with the interaction between Tocilizumab and genetic variants, were applied to assess the impact of these genetic variants in the efficacy of Tocilizumab in terms of mortality. Results Age (p < 0.001) and cardiovascular disease (p < 0.001) are risk factors for mortality in COVID-19 patients. The presence of GG and TT genotypes at IL10Rβ (rs2834167) and IL1β (rs1143633) genes significantly associates with a reduced risk of mortality in patients treated with Tocilizumab (OR = 0.111; 95%CI = 0.015-0.829; p = 0.010 and OR = 0.378; 95%CI = 0.154-0.924; p = 0.028 respectively). The presence of CC genotype at IL1RN (rs2234679) significantly associates with an increased risk of mortality, but only in patients not treated with Tocilizumab (OR = 3.200; 95%CI = 1.512-6.771; p = 0.002). Exhaustive internal validation using a bootstrap method (B = 500 replicates) validated the accuracy of the predictive models. Conclusion We developed a series of predictive models based on three genotypes in genes with a strong implication in the etiopathogenesis of COVID-19 disease capable of predicting the risk of mortality in patients treated with Tocilizumab.
Collapse
Affiliation(s)
- Alejandro Durán-Sotuela
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC) Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Jorge Vázquez-García
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC) Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Sara Relaño-Fernández
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC) Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Vanesa Balboa-Barreiro
- Unidad de Apoyo a La Investigación, Grupo de Investigación en Enfermería y Cuidados en Salud, Grupo de Investigación en Reumatología y Salud (GIR-S), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC) Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Juan Fernández-Tajes
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC) Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC) Sergas, Universidade da Coruña (UDC), A Coruña, Spain
- Universidade da Coruña (UDC), Centro de Investigación de Ciencias Avanzadas (CICA), Grupo de Investigación en Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, A Coruña, Spain
| | - Ignacio Rego-Pérez
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC) Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
4
|
Beurton A, Kooistra EJ, De Jong A, Schiffl H, Jourdain M, Garcia B, Vimpère D, Jaber S, Pickkers P, Papazian L. Specific and Non-specific Aspects and Future Challenges of ICU Care Among COVID-19 Patients with Obesity: A Narrative Review. Curr Obes Rep 2024; 13:545-563. [PMID: 38573465 DOI: 10.1007/s13679-024-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Since the end of 2019, the coronavirus disease 2019 (COVID-19) pandemic has infected nearly 800 million people and caused almost seven million deaths. Obesity was quickly identified as a risk factor for severe COVID-19, ICU admission, acute respiratory distress syndrome, organ support including mechanical ventilation and prolonged length of stay. The relationship among obesity; COVID-19; and respiratory, thrombotic, and renal complications upon admission to the ICU is unclear. RECENT FINDINGS The predominant effect of a hyperinflammatory status or a cytokine storm has been suggested in patients with obesity, but more recent studies have challenged this hypothesis. Numerous studies have also shown increased mortality among critically ill patients with obesity and COVID-19, casting doubt on the obesity paradox, with survival advantages with overweight and mild obesity being reported in other ICU syndromes. Finally, it is now clear that the increase in the global prevalence of overweight and obesity is a major public health issue that must be accompanied by a transformation of our ICUs, both in terms of equipment and human resources. Research must also focus more on these patients to improve their care. In this review, we focused on the central role of obesity in critically ill patients during this pandemic, highlighting its specificities during their stay in the ICU, identifying the lessons we have learned, and identifying areas for future research as well as the future challenges for ICU activity.
Collapse
Affiliation(s)
- Alexandra Beurton
- Department of Intensive Care, Hôpital Tenon, APHP, Paris, France.
- UMR_S 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, Sorbonne Université, Paris, France.
| | - Emma J Kooistra
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Audrey De Jong
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, Montpellier, France
- Phymed Exp INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Helmut Schiffl
- Division of Nephrology, Department of Internal Medicine IV, University Hospital LMU Munich, Munich, Germany
| | - Mercedes Jourdain
- CHU Lille, Univ-Lille, INSERM UMR 1190, ICU Department, F-59037, Lille, France
| | - Bruno Garcia
- CHU Lille, Univ-Lille, INSERM UMR 1190, ICU Department, F-59037, Lille, France
| | - Damien Vimpère
- Anesthesia and Critical Care Department, Hôpital Necker, APHP, Paris, France
| | - Samir Jaber
- Anesthesia and Critical Care Department, Saint Eloi Teaching Hospital, University Montpellier 1, Montpellier, France
- Phymed Exp INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Laurent Papazian
- Intensive Care Unit, Centre Hospitalier de Bastia, Bastia, Corsica, France
- Aix-Marseille University, Marseille, France
| |
Collapse
|