1
|
Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:415-425. [PMID: 32380253 PMCID: PMC7498668 DOI: 10.1016/j.jshs.2020.04.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 02/18/2020] [Indexed: 05/02/2023]
Abstract
The first report demonstrating that prolonged endurance exercise promotes oxidative stress in humans was published more than 4 decades ago. Since this discovery, many ensuing investigations have corroborated the fact that muscular exercise increases the production of reactive oxygen species (ROS) and results in oxidative stress in numerous tissues including blood and skeletal muscles. Although several tissues may contribute to exercise-induced ROS production, it is predicted that muscular contractions stimulate ROS production in active muscle fibers and that skeletal muscle is a primary source of ROS production during exercise. This contraction-induced ROS generation is associated with (1) oxidant damage in several tissues (e.g., increased protein oxidation and lipid peroxidation), (2) accelerated muscle fatigue, and (3) activation of biochemical signaling pathways that contribute to exercise-induced adaptation in the contracting muscle fibers. While our understanding of exercise and oxidative stress has advanced rapidly during the last decades, questions remain about whether exercise-induced increases in ROS production are beneficial or harmful to health. This review addresses this issue by discussing the site(s) of oxidant production during exercise and detailing the health consequences of exercise-induced ROS production.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, 10011, Brazil
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA; Department of Exercise and Sport Sciences, Hacettepe University, Ankara, 06800, Turkey.
| | - Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA; Department of Exercise Physiology, Juntendo University, Tokyo, 270-1695, Japan
| | - Matthew P Bomkamp
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA
| | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32608, USA
| |
Collapse
|
2
|
Gowrisankar YV, Clark MA. Angiotensin II induces interleukin-6 expression in astrocytes: Role of reactive oxygen species and NF-κB. Mol Cell Endocrinol 2016; 437:130-141. [PMID: 27539920 DOI: 10.1016/j.mce.2016.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/21/2016] [Accepted: 08/08/2016] [Indexed: 02/07/2023]
Abstract
Previously, we showed that the bio-peptide angiotensin (Ang) II induces interleukin-6 (IL-6) in cultured astrocytes; however, the mechanism(s) involved in this effect were unknown. In the current study, we determined in brainstem and cerebellum astrocytes from the spontaneously hypertensive rat (SHR), the effect of Ang II to induce IL-6 as well as reactive oxygen species (ROS) generation. Results from this study showed that Ang II significantly induced the differential expression of IL-6 mRNA and protein levels in astrocytes from both regions of Wistar and SHRs. There were differences in the ability of Ang II to induce IL-6 mRNA and protein levels, but these differences were not apparent at all time points examined. Ang II also induced ROS generation, but there were no significant differences between ROS generation in SHR samples as compared to the Wistar samples. Ang II-induced IL-6 levels were mediated via the AT1/Nuclear Factor Kappa beta/ROS pathway. Overall, our findings suggest that there may be dysregulation in IL-6 production from astrocytes, contributing to differences observed in SHRs versus its normotensive control. Elucidating the mechanisms involved in Ang II pro-inflammatory effects in the central nervous system may lead to the development of novel therapeutic strategies that can be harnessed not just to treat hypertension, but other Ang II-mediated diseases as well.
Collapse
Affiliation(s)
- Yugandhar V Gowrisankar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
3
|
Feng HZ, Chen X, Malek MH, Jin JP. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers. Am J Physiol Cell Physiol 2015; 310:C27-40. [PMID: 26447205 DOI: 10.1152/ajpcell.00173.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/05/2015] [Indexed: 02/08/2023]
Abstract
Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30-60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30-60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Xuequn Chen
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Moh H Malek
- Department of Health Care Sciences, Wayne State University, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University, Detroit, Michigan;
| |
Collapse
|
4
|
McLean JB, Moylan JS, Andrade FH. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. Front Physiol 2014; 5:503. [PMID: 25566096 PMCID: PMC4270181 DOI: 10.3389/fphys.2014.00503] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/03/2014] [Indexed: 01/06/2023] Open
Abstract
AIMS Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM) would impair the mitochondrial electron transport chain (ETC) and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 min, 2, 4, 24 or 48 h. We measured protein content by western blot; oxidant production by 2',7'-dichlorofluorescin diacetate (DCF), 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF), and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR) of intact myotubes by Seahorse XF Analyzer. RESULTS LCM treatment for 2 or 24 h decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS). In particular, mitochondrial superoxide (MitoSOX) was elevated at 2 h. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. CONCLUSION These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance.
Collapse
Affiliation(s)
- Julie B McLean
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Jennifer S Moylan
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| | - Francisco H Andrade
- Department of Physiology, University of Kentucky Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
5
|
The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-β1 induced by AngII in mouse skeletal muscle. Clin Sci (Lond) 2014; 127:251-64. [PMID: 24588264 DOI: 10.1042/cs20130585] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AngII (angiotensin II) induces pathological conditions such as fibrosis in skeletal muscle. In this process, AngII increases ROS (reactive oxygen species) and induces a biphasic phosphorylation of p38 MAPK (mitogen-activated protein kinase). In addition, AngII stimulates the expression and production of TGF (transforming growth factor)-β1 via a mechanism dependent on ROS production mediated by NADPH oxidase (NOX) and p38 MAPK activation. In the present study, we investigated whether Ang-(1-7) [angiotensin-(1-7)], through the Mas-1 receptor, can counteract the signalling induced by AngII in mouse skeletal muscle and cause a decrease in the expression and further activity of TGF-β1 in skeletal muscle cells. Our results show that Ang-(1-7) decreased the expression of TGF-β1 induced by AngII in a dose-dependent manner. In addition, we observed that Ang-(1-7) prevented the increase in TGF-β1 expression induced by AngII, ROS production dependent on NOX and the early phase of p38 MAPK phosphorylation. Interestingly, Ang-(1-7) also prevented the late phase of p38 MAPK phosphorylation, Smad-2 phosphorylation and Smad-4 nuclear translocation, an increase in transcriptional activity, as determined using the p3TP-lux reporter, and fibronectin levels, all of which are dependent on the TGF-β1 levels induced by AngII. We also demonstrated that Ang-(1-7) prevented the increase in TGF-β1, fibronectin and collagen content in the diaphragm of mice infused with AngII. All of these effects were reversed by the administration of A779, indicating the participation of Mas-1. In conclusion, our findings support the hypothesis that Ang-(1-7) decreases the expression and further biological activity of TGF-β1 induced by AngII in vitro and in vivo.
Collapse
|
6
|
Abstract
It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox regulation of muscle adaptation and oxidant-mediated muscle fatigue.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
The syndrome of chronic critical illness has well-documented emotional, social, and financial burdens for individuals, caregivers, and the health care system. The purpose of this article is to provide experienced acute and critical care clinicians with essential information about the prevalence and profile of the chronically critically ill patient needed for comprehensive care. In addition, pathophysiology contributing to chronic critical illness is addressed, though the exact mechanism underlying the conversion of acute critical illness to chronic critical illness is unknown. Clinicians can use this information to identify at-risk intensive care unit patients and to institute proactive care to minimize burden and distress experienced by patients and their caregivers.
Collapse
|
8
|
The role of inflammation in ICU-acquired weakness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:186. [PMID: 20727229 PMCID: PMC2945106 DOI: 10.1186/cc9187] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A pilot observational study by Weber-Carstens and colleagues contributes to a mechanistic explanation of the puzzling and complex phenomena of ICU-acquired weakness (ICU-AW). The authors suggest systemic, inflammatory-mediated pathology is the most significant risk factor for ICU-AW. While this finding is somewhat equivocal, it provides important direction for future investigations and illustrates the challenges of interpreting significance in small observational studies.
Collapse
|
9
|
Winkelman C. Investigating activity in hospitalized patients with chronic obstructive pulmonary disease: a pilot study. Heart Lung 2010; 39:319-30. [PMID: 20561844 PMCID: PMC2897943 DOI: 10.1016/j.hrtlng.2009.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study examined therapeutic mobility activity, and investigated whether serum levels of inflammatory biomarkers interleukin (IL)-6 and IL-10 varied between periods of rest and activity. METHODS This observational, exploratory study took place in a medical intensive care unit and in stepdown units at an urban, academic medical center managed by intensivists. Our sample included 17 adults with exacerbations of chronic obstructive pulmonary disease (COPD). RESULTS Our results indicate that activity can occur for about 20 minutes, early during a hospitalization, among critically ill adults with COPD exacerbations, and activity can progress safely over 2 days in an intensive-care or stepdown setting. Physical activity was low in intensity, as measured by actigraphy. CONCLUSION Although no significant differences were evident between serum inflammatory biomarkers at rest vs after activity in this small sample, trend-related data indicate that low-intensity activity has the potential to alter the inflammatory profile of hospitalized COPD adults.
Collapse
Affiliation(s)
- Chris Winkelman
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
10
|
Kandalam U, Clark MA. Angiotensin II activates JAK2/STAT3 pathway and induces interleukin-6 production in cultured rat brainstem astrocytes. ACTA ACUST UNITED AC 2010; 159:110-6. [PMID: 19748527 DOI: 10.1016/j.regpep.2009.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/13/2009] [Accepted: 09/02/2009] [Indexed: 01/09/2023]
Abstract
We have shown that tyrosine kinases and mitogen-activated protein kinases mediate angiotensin II (Ang II) effects in cultured rat astrocytes. In this study, we investigated whether Ang II induces Janus kinase (JAK) 2, signal transducer and activators of transcription (STAT) 3 phosphorylation, and interleukin-6 (IL-6) secretion in cultured brainstem rat astrocytes. Ang II increased JAK2 phosphorylation in a time- and dose-dependent manner. Maximal phosphorylation of 1.7+/-0.4 fold above basal was observed at 15 min with 100 nM Ang II. Losartan (10 microM), an AT(1) receptor blocker, inhibited Ang II-mediated JAK2 phosphorylation, while 10 microM PD123319, an AT(2) receptor blocker, was ineffective. The JAK2 inhibitor, AG490 (50 microM), prevented Ang II JAK2 phosphorylation. Ang II also stimulated STAT3 in a concentration- and time-dependent manner. Maximal phosphorylation of 0.8+/-0.11 above basal was observed at 15 min with 100 nM Ang II. Treatment with AG490 reduced Ang II phosphorylation of STAT3 and Ang II-induced astrocyte growth suggesting that JAK2 is an upstream signal in these Ang II effects. Ang II also stimulated IL-6 secretion from brainstem astrocytes in a concentration- and time-dependent manner. Maximal IL-6 secretion of 0.7+/-0.2 above basal was observed with 100 nM Ang II after 48 h of treatment. Losartan decreased Ang II-induced IL-6 secretion while PD123319 was ineffective. Interestingly, AG490 reduced Ang II-stimulated IL-6 secretion. Our study showed for the first time that Ang II induced JAK2/STAT3 phosphorylation and IL-6 secretion through activation of the Ang II AT(1) receptor in brainstem astrocytes. In addition, Ang II stimulated IL-6 secretion and astrocyte growth through the JAK2 pathway in brainstem astrocytes. These results provide new insights into pro-inflammatory and mitogenic signaling mechanisms of Ang II in astrocytes.
Collapse
Affiliation(s)
- Umadevi Kandalam
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 S. University Drive, Fort Lauderdale, FL 33328, USA
| | | |
Collapse
|
11
|
Abstract
Bed rest is a common intervention for critically ill adults. Associated with both benefits and adverse effects, bed rest is undergoing increasing scrutiny as a therapeutic option in the intensive care unit. Bed rest has molecular and systemic effects, ultimately affecting functional outcomes in healthy individuals as well as in those with acute and critical illnesses. Using empirical sources, the purpose of this article was to describe the consequences of bed rest and immobility, especially consequences with implications for critically ill adults in the intensive care unit. This review uses body systems to cluster classic and current results of bed rest studies, beginning with cardiovascular and including pulmonary, renal, skin, nervous, immune, gastrointestinal/ metabolic, and skeletal systems. It concludes with effects on muscles, a system profoundly affected by immobility and bed rest.
Collapse
Affiliation(s)
- Chris Winkelman
- Frances Payne Bolton School of Nursing, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88:1243-76. [PMID: 18923182 DOI: 10.1152/physrev.00031.2007] [Citation(s) in RCA: 1536] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
13
|
Lees SJ, Childs TE, Booth FW. p21(Cip1) expression is increased in ambient oxygen, compared to estimated physiological (5%) levels in rat muscle precursor cell culture. Cell Prolif 2008; 41:193-207. [PMID: 18336467 DOI: 10.1111/j.1365-2184.2008.00512.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE While it is common practice to culture cells in the presence of ambient oxygen (approximately 21% O2), O2 level observed in the physiological environment is often much lower. Previous efforts to culture a variety of different stem cells, including muscle precursor cells (MPC), under O2 conditions that better mimic in vivo conditions have resulted in enhanced proliferation. In the present study, we hypothesized that 20% O2 in culture represents a sufficient stimulus to cause increased expression of two key negative regulators of the cell-cycle Cip/Kip family of cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), in MPCs. MATERIALS AND METHODS MPCs were isolated from Fischer 344 x Brown Norway F(1) hybrid male rats and O2 was adjusted in culture using a tri-gas incubator. RESULTS 5-Bromo-2'-deoxyuridine incorporation, cell number and nuclear proliferating cell nuclear antigen expression were all decreased after 48 h culture in 20% O2, compared to 5% O2. Twenty per cent O2 had no effect on either p27(Kip1) promoter activity or protein expression. Although p21(Cip1) promoter activity remained unchanged between 5% and 20% O2, there were significant increases in both p21(Cip1) mRNA and protein expression. Furthermore, 20% O2 caused an increase in p21(Cip1) mRNA stability and p53 transcription factor activity. CONCLUSION These findings are considered important because they reveal p21(Cip1) as a critical regulatory protein that needs to be considered when interpreting proliferation data from MPCs studied in culture. In addition, O2-dependent regulation of MPC proliferation is relevant to conditions, including sarcopenia, heart failure, cancer and muscular dystrophy, where increased oxidative stress exists.
Collapse
Affiliation(s)
- S J Lees
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
14
|
Widrick JJ, Maddalozzo GF, Hu H, Herron JC, Iwaniec UT, Turner RT. Detrimental effects of reloading recovery on force, shortening velocity, and power of soleus muscles from hindlimb-unloaded rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1585-92. [PMID: 18753267 DOI: 10.1152/ajpregu.00045.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand how atrophied muscles recover from prolonged nonweight-bearing, we studied soleus muscles (in vitro at optimal length) from female rats subjected to normal weight bearing (WB), 15 days of hindlimb unloading (HU), or 15 days HU followed by 9 days of weight bearing reloading (HU-R). HU reduced peak tetanic force (P(o)), increased maximal shortening velocity (V(max)), and lowered peak power/muscle volume. Nine days of reloading failed to improve P(o), while depressing V(max) and intrinsic power below WB levels. These functional changes appeared intracellular in origin as HU-induced reductions in soleus mass, fiber cross-sectional area, and physiological cross-sectional area were partially or completely restored by reloading. We calculated that HU-induced reductions in soleus fiber length were of sufficient magnitude to overextend sarcomeres onto the descending limb of their length-tension relationship upon the resumption of WB activity. In conclusion, the force, shortening velocity, and power deficits observed after 9 days of reloading are consistent with contraction-induced damage to the soleus. HU-induced reductions in fiber length indicate that sarcomere hyperextension upon the resumption of weight-bearing activity may be an important mechanism underlying this response.
Collapse
Affiliation(s)
- J J Widrick
- Dept. of Nutrition and Exercise Sciences, Oregon State Univ., Corvallis, OR 97331, USA.
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Supinski GS, Callahan LA. Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol (1985) 2007; 102:2056-63. [PMID: 17218425 DOI: 10.1152/japplphysiol.01138.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Loss of functional capacity of skeletal muscle is a major cause of morbidity in patients with a number of acute and chronic clinical disorders, including sepsis, chronic obstructive pulmonary disease, heart failure, uremia, and cancer. Weakness in these patients can manifest as either severe limb muscle weakness (even to the point of virtual paralysis), respiratory muscle weakness requiring mechanical ventilatory support, and/or some combination of these phenomena. While factors such as nutritional deficiency and disuse may contribute to the development of muscle weakness in these conditions, systemic inflammation may be the major factor producing skeletal muscle dysfunction in these disorders. Importantly, studies conducted over the past 15 years indicate that free radical species (superoxide, hydroxyl radicals, nitric oxide, peroxynitrite, and the free radical-derived product hydrogen peroxide) play an key role in modulating inflammation and/or infection-induced alterations in skeletal muscle function. Substantial evidence exists indicating that several free radical species can directly alter contractile protein function, and evidence suggests that free radicals also have important effects on sarcoplasmic reticulum function, on mitochondrial function, and on sarcolemmal integrity. Free radicals also modulate activation of several proteolytic pathways, including proteosomally mediated protein degradation and, at least theoretically, may also influence pathways of protein synthesis. As a result, free radicals appear to play an important role in regulating a number of downstream processes that collectively act to impair muscle function and lead to reductions in muscle strength and mass in inflammatory conditions.
Collapse
Affiliation(s)
- Gerald S Supinski
- Chandler Medical Center, University of Kentucky, Lexington, KY 40536, USA.
| | | |
Collapse
|
17
|
Abstract
Bed rest is a commonly prescribed activity restriction among patients in the ICU. Although bed rest may promote rest, recovery and safety, inactivity related to bed rest also may lead to complications and adverse outcomes. The biological mechanisms that lead to immediate and long-term sequelae from bed rest have not been elucidated. It may be the inflammatory factors common to critical illness combined with bed rest lead to a positive feedback loop, contributing to inflammatory disequilibrium. This disequilibrium has a profound affect on muscles. Muscle decay has serious and long-term adverse outcomes on survivors of critical illness. Mobility therapy may improve inflammatory disequilibrium and preserve muscles, leading to improved functional outcome. Investigations in the laboratory, in healthy people and among patients with systemic inflammatory disease, suggest that activity does not exacerbate inflammation. Clinically, exercise is beneficial to patients with various chronic inflammatory diseases. Further study is needed to best understand the role, duration, and frequency of activity in promoting recovery for critically ill patients.
Collapse
Affiliation(s)
- Chris Winkelman
- Frances Payne Bolton School of Nursing, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
Basi DL, Adhikari N, Mariash A, Li Q, Kao E, Mullegama SV, Hall JL. Femoral artery neointimal hyperplasia is reduced after wire injury in Ref-1+/- mice. Am J Physiol Heart Circ Physiol 2006; 292:H516-21. [PMID: 16936011 DOI: 10.1152/ajpheart.00246.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox factor-1 (Ref-1) is a multifunctional protein that regulates redox, DNA repair, and the response to cell stress. We previously demonstrated that Ref-1(+/-) mice exhibit a significantly reduced Ref-1 mRNA and protein levels within the vasculature, which are associated with increased oxidative stress. The goal of this study was to test the hypothesis that partial loss of Ref-1 altered the cellular response to vascular injury. Fourteen days after femoral artery wire injury, we found that vessel intima-to-media ratio was significantly reduced in Ref-1(+/-) mice compared with that in wild-type mice (P < 0.01). Bromodeoxyuridine labeling and transferase-mediated dUTP nick-end labeling staining at 14 days did not differ in the Ref-1(+/-) mice. In vitro studies found no significant changes in either serum-induced proliferation or baseline apoptosis in Ref-1(+/-) vascular smooth muscle cells. Exposure to Fas ligand; however, did result in increased susceptibility of Ref-1(+/-) vascular smooth muscle cells to apoptosis (P < 0.001). Ref-1(+/-) mice exhibited an increase in circulating baseline levels of IL-10, IL-1alpha, and VEGF compared with those in wild-type mice but a marked impairment in these pathways in response to injury. In sum, loss of a single allele of Ref-1 is sufficient to reduce intimal lesion formation and to alter circulating cytokine and growth factor expression.
Collapse
Affiliation(s)
- David L Basi
- Lillehei Heart Institute, Univ. of Minnesota, 420 Delaware St., Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|