1
|
Fesharaki-Zadeh A. Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges. Biomedicines 2023; 11:3158. [PMID: 38137378 PMCID: PMC10740836 DOI: 10.3390/biomedicines11123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the clinical identification and understanding of the complex neuropathological phenomena underlying CTE. This review provides a comprehensive overview of the current understanding of the neuropathological and clinical features of CTE, proposed biomarkers of traumatic brain injury (TBI) in both research and clinical settings, and a range of treatments based on previous preclinical and clinical research studies. Due to the heterogeneity of TBI, there is no universally agreed-upon serum, CSF, or neuroimaging marker for its diagnosis. However, as our understanding of this complex disease continues to evolve, it is likely that there will be more robust, early diagnostic methods and effective clinical treatments. This is especially important given the increasing evidence of a correlation between TBI and neurodegenerative conditions, such as Alzheimer's disease and CTE. As public awareness of these conditions grows, it is imperative to prioritize both basic and clinical research, as well as the implementation of necessary safe and preventative measures.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Blackwell LS, Grell R. Pediatric Traumatic Brain Injury: Impact on the Developing Brain. Pediatr Neurol 2023; 148:215-222. [PMID: 37652817 DOI: 10.1016/j.pediatrneurol.2023.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 09/02/2023]
Abstract
Traumatic brain injury (TBI) is a serious public health concern impacting millions of children and adolescents each year. Experiencing a brain injury during key critical periods of brain development can affect the normal formation of brain networks that are responsible for a range of complex neurocognitive outcomes. In addition, there are multiple pre- and postinjury factors that influence the trajectory of recovery and outcomes. In this review, we will focus on the current state of the literature within pediatric TBI; systematically review the available research on developmental aspects of TBI in children, focusing on the pathophysiology of the injury and its impact on the developing brain; and highlight knowledge gaps for further exploration.
Collapse
Affiliation(s)
| | - Robert Grell
- Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
4
|
Erythropoietin Does Not Alter Serum Profiles of Neuronal and Axonal Biomarkers After Traumatic Brain Injury: Findings From the Australian EPO-TBI Clinical Trial. Crit Care Med 2019; 46:554-561. [PMID: 29278529 DOI: 10.1097/ccm.0000000000002938] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To determine profiles of serum ubiquitin carboxy-terminal hydrolase L1 and phosphorylated neurofilament heavy-chain, examine whether erythropoietin administration reduce their concentrations, and whether biomarkers discriminate between erythropoietin and placebo treatment groups. DESIGN Single-center, prospective observational study. SETTING A sub-study of the erythropoietin-traumatic brain injury clinical trial, conducted at the Alfred Hospital, Melbourne, Australia. PATIENTS Forty-four patients with moderate-to-severe traumatic brain injury. INTERVENTIONS Epoetin alfa 40,000 IU or 1 mL sodium chloride 0.9 as subcutaneous injection within 24 hours of traumatic brain injury. MEASUREMENTS AND MAIN RESULTS Ubiquitin carboxy-terminal hydrolase L1, phosphorylated neurofilament heavy-chain, and erythropoietin concentrations were measured in serum by enzyme-linked immunosorbent assay from D0 (within 24 hr of injury, prior to erythropoietin/vehicle administration) to D5. Biomarker concentrations were compared between injury severities, diffuse versus focal traumatic brain injury and erythropoietin or placebo treatment groups. Ubiquitin carboxy-terminal hydrolase L1 peaked at 146.0 ng/mL on D0, significantly decreased to 84.30 ng/mL on D1, and declined thereafter. Phosphorylated neurofilament heavy-chain levels were lowest at D0 and peaked on D5 at 157.9 ng/mL. D0 ubiquitin carboxy-terminal hydrolase L1 concentrations were higher in diffuse traumatic brain injury. Peak phosphorylated neurofilament heavy-chain levels on D3 and D4 correlated with Glasgow Outcome Score-Extended, predicting poor outcome. Erythropoietin did not reduce concentrations of ubiquitin carboxy-terminal hydrolase L1 or phosphorylated neurofilament heavy-chain. CONCLUSIONS Serum ubiquitin carboxy-terminal hydrolase L1 and phosphorylated neurofilament heavy-chain increase after traumatic brain injury reflecting early neuronal and progressive axonal injury. Consistent with lack of improved outcome in traumatic brain injury patients treated with erythropoietin, biomarker concentrations and profiles were not affected by erythropoietin. Pharmacokinetics of erythropoietin suggest that the dose given was possibly too low to exert neuroprotection.
Collapse
|
5
|
Mrozek S, Delamarre L, Capilla F, Al-Saati T, Fourcade O, Constantin JM, Geeraerts T. Cerebral Expression of Glial Fibrillary Acidic Protein, Ubiquitin Carboxy-Terminal Hydrolase-L1, and Matrix Metalloproteinase 9 After Traumatic Brain Injury and Secondary Brain Insults in Rats. Biomark Insights 2019; 14:1177271919851515. [PMID: 31210728 PMCID: PMC6552356 DOI: 10.1177/1177271919851515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), and matrix metalloproteinase 9 (MMP-9) are potential biomarkers of traumatic brain injury (TBI) but also of secondary insults to the brain. The aim of this study was to describe the cerebral distribution of GFAP, UCH-L1, and MMP-9 in a rat model of diffuse TBI associated with standardized hypoxia-hypotension (HH). Adult male Sprague-Dawley rats were allocated to Sham (n = 10), TBI (n = 10), HH (n = 10), and TBI+HH (n = 10) groups. After 4 hours, brains were rapidly removed and immunostaining of GFAP, UCH-L1, and MMP-9 was performed. Areas of interest that have been described as particularly sensitive to hypoxic insults were analyzed. For GFAP, in the neocortex, immunostaining revealed a significant decrease in strong staining for HH and TBI+HH groups compared with TBI group (P < .0001). For UCH-L1, the total immunostaining (6 regions of interest) reported a significant increase in strong staining (P < .0001) and decrease in weak staining (P < .0001) for the HH and TBI+HH groups compared with the Sham and TBI groups. For MMP-9, for the HH and TBI+HH groups, a significant increase in moderate (P < .0001) and weak staining (P < .0001) and a decrease in negative staining (P < .0001) compared with the Sham and TBI groups were observed. UCH-L1 and MMP-9 immunostainings increased after HH alone or HH combined with TBI compared with TBI alone. GFAP immunostaining decreased particularly in the neocortex after HH alone or HH combined with TBI compared with TBI alone. These three biomarkers could therefore be considered as potential biomarkers of HH insults independently of TBI.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Louis Delamarre
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Florence Capilla
- Experimental Histopathology Department, INSERM US006-CREFRE, University Hospital of Toulouse, Toulouse, France
| | - Talal Al-Saati
- Experimental Histopathology Department, INSERM US006-CREFRE, University Hospital of Toulouse, Toulouse, France
| | - Olivier Fourcade
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Jean-Michel Constantin
- Department of Anesthesiology and Critical Care, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Thomas Geeraerts
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.,ToNIC (Toulouse NeuroImaging Center), University Toulouse 3-Paul Sabatier, Inserm-UPS, Toulouse, France
| |
Collapse
|
6
|
Wagner AK, Kumar RG. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions. Neuropharmacology 2018; 145:133-144. [PMID: 30222984 DOI: 10.1016/j.neuropharm.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Most areas of medicine use biomarkers in some capacity to aid in understanding how personal biology informs clinical care. This article draws upon the Rehabilomics research model as a translational framework for programs of precision rehabilitation and intervention research focused on linking personal biology to treatment response using biopsychosocial constructs that broadly represent function and that can be applied to many clinical populations with disability. The summary applies the Rehabilomics research framework to the population with traumatic brain injury (TBI) and emphasizes a broad vision for biomarker inclusion, beyond typical brain-derived biomarkers, to capture and/or reflect important neurological and non-neurological pathology associated with TBI as a chronic condition. Humoral signaling molecules are explored as important signaling and regulatory drivers of these chronic conditions and their impact on function. Importantly, secondary injury cascades involved in the humoral triad are influenced by the systemic response to TBI and the development of non-neurological organ dysfunction (NNOD). Biomarkers have been successfully leveraged in other medical fields to inform pre-randomization patient selection for clinical trials, however, this practice largely has not been utilized in TBI research. As such, the applicability of the Rehabilomics research model to contemporary clinical trials and comparative effectiveness research designs for neurological and rehabilitation populations is emphasized. Potential points of intervention to modify inflammation, hormonal, or neurotrophic support through rehabilitation interventions are discussed. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- A K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Neuroscience, University of Pittsburgh, USA; Center for Neuroscience, University of Pittsburgh, USA.
| | - R G Kumar
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Epidemiology, University of Pittsburgh, USA
| |
Collapse
|
7
|
Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 2018; 18:165-180. [PMID: 29338452 PMCID: PMC6359936 DOI: 10.1080/14737159.2018.1428089] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major worldwide neurological disorder of epidemic proportions. To date, there are still no FDA-approved therapies to treat any forms of TBI. Encouragingly, there are emerging data showing that biofluid-based TBI biomarker tests have the potential to diagnose the presence of TBI of different severities including concussion, and to predict outcome. Areas covered: The authors provide an update on the current knowledge of TBI biomarkers, including protein biomarkers for neuronal cell body injury (UCH-L1, NSE), astroglial injury (GFAP, S100B), neuronal cell death (αII-spectrin breakdown products), axonal injury (NF proteins), white matter injury (MBP), post-injury neurodegeneration (total Tau and phospho-Tau), post-injury autoimmune response (brain antigen-targeting autoantibodies), and other emerging non-protein biomarkers. The authors discuss biomarker evidence in TBI diagnosis, outcome prognosis and possible identification of post-TBI neurodegernative diseases (e.g. chronic traumatic encephalopathy and Alzheimer's disease), and as theranostic tools in pre-clinical and clinical settings. Expert commentary: A spectrum of biomarkers is now at or near the stage of formal clinical validation of their diagnostic and prognostic utilities in the management of TBI of varied severities including concussions. TBI biomarkers could serve as a theranostic tool in facilitating drug development and treatment monitoring.
Collapse
Affiliation(s)
- Kevin K Wang
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Zhihui Yang
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Tian Zhu
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Yuan Shi
- b Department Of Pediatrics, Daping Hospital, Chongqing , Third Military Medical University , Chongqing , China
| | - Richard Rubenstein
- c Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology , SUNY Downstate Medical Center , Brooklyn , NY , USA
| | - J Adrian Tyndall
- d Department of Emergency Medicine , University of Florida , Gainesville , Florida , USA
| | - Geoff T Manley
- e Brain and Spinal Injury Center , San Francisco General Hospital , San Francisco , CA , USA
- f Department of Neurological Surgery , University of California, San Francisco , San Francisco , CA , USA
| |
Collapse
|
8
|
Reuter-Rice K, Eads JK, Berndt SB, Bennett E. Chapter 6 state of the science of pediatric traumatic brain injury: biomarkers and gene association studies. ANNUAL REVIEW OF NURSING RESEARCH 2016; 33:185-217. [PMID: 25946386 DOI: 10.1891/0739-6686.33.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Our objective is to review the most widely used biomarkers and gene studies reported in pediatric traumatic brain injury (TBI) literature, to describe their findings, and to discuss the discoveries and gaps that advance the understanding of brain injury and its associated outcomes. Ultimately, we aim to inform the science for future research priorities. DATA SOURCES We searched PubMed, MEDLINE, CINAHL, and the Cochrane Database of Systematic Reviews for published English language studies conducted in the last 10 years to identify reviews and completed studies of biomarkers and gene associations in pediatric TBI. Of the 131 biomarker articles, only 16 were specific to pediatric TBI patients, whereas of the gene association studies in children with TBI, only four were included in this review. CONCLUSION Biomarker and gene attributes are grossly understudied in pediatric TBI in comparison to adults. Although recent advances recognize the importance of biomarkers in the study of brain injury, the limited number of studies and genomic associations in the injured brain has shown the need for common data elements, larger sample sizes, heterogeneity, and common collection methods that allow for greater understanding of the injured pediatric brain. By building on to the consortium of interprofessional scientists, continued research priorities would lead to improved outcome prediction and treatment strategies for children who experience a TBI. IMPLICATIONS FOR NURSING RESEARCH Understanding recent advances in biomarker and genomic studies in pediatric TBI is important because these advances may guide future research, collaborations, and interventions. It is also important to ensure that nursing is a part of this evolving science to promote improved outcomes in children with TBIs.
Collapse
|
9
|
Berger RP, Fromkin J, Rubin P, Snyder J, Richichi R, Kochanek P. Serum D-dimer concentrations are increased after pediatric traumatic brain injury. J Pediatr 2015; 166:383-8. [PMID: 25454315 PMCID: PMC4469943 DOI: 10.1016/j.jpeds.2014.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To determine whether D-dimer would be increased in children with traumatic brain injury (TBI), specifically mild abusive head trauma. STUDY DESIGN D-dimer was measured using multiplex bead technology in 195 children <4 years old (n = 93 controls without TBI, n = 102 cases with TBI) using previously collected serum. D-dimer was then measured prospectively in a clinical setting in 44 children (n = 24 controls, n = 20 cases). Receiver operator curves were generated for prospective data. RESULTS In both the retrospective and prospective cohorts, median (25th-75th percentile) D-dimer was significantly higher in cases vs controls. A receiver operator curve demonstrated an area under the curve of 0.91 (95% CI 0.83-0.99) in the prospective cohort. At a cut-off of 0.59 μg/L, the sensitivity and specificity for identification of a case was 90% and 75%, respectively. CONCLUSIONS Our data suggest that serum D-dimer may be able to be used to identify which young children at risk for abusive head trauma might benefit from a head computed tomography or other additional evaluation. Additional data are needed to better identify the clinical scenarios that may result in false positive or false negative D-dimer concentrations.
Collapse
Affiliation(s)
- Rachel P. Berger
- Associate Professor of Pediatrics, Safar Center for Resuscitation Research, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, University of Pittsburgh, Phone: 412-692-8664, Fax: 412-692-8399
| | - Janet Fromkin
- Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, University of Pittsburgh, Phone: 412-692-8664, Fax: 412-692-8399
| | - Pam Rubin
- Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, University of Pittsburgh, Phone: 412-692-8664, Fax: 412-692-8399
| | - John Snyder
- UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, Phone: 412-623-7748, Fax: 412-623-1415
| | - Rudolph Richichi
- Statistical Analysis and Measurement Consultants, Inc., P.O. Box 224, Lanexa, VA 23089
| | - Patrick Kochanek
- Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh PA 15260, Phone: 412-383-1900
| |
Collapse
|
10
|
Wagner AK. A Rehabilomics framework for personalized and translational rehabilitation research and care for individuals with disabilities: Perspectives and considerations for spinal cord injury. J Spinal Cord Med 2014; 37:493-502. [PMID: 25029659 PMCID: PMC4166184 DOI: 10.1179/2045772314y.0000000248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Despite many people having similar clinical presentation, demographic factors, and clinical care, outcome can differ for those sustaining significant injury such as spinal cord injury (SCI) and traumatic brain injury (TBI). In addition to traditional demographic, social, and clinical factors, variability also may be attributable to innate (including genetic, transcriptomic proteomic, epigenetic) biological variation that individuals bring to recovery and their unique response to their care and environment. Technologies collectively called "-omics" enable simultaneous measurement of an enormous number of biomolecules that can capture many potential biological contributors to heterogeneity of injury/disease course and outcome. Due to the nature of injury and complex disease, and its associations with impairment, disability, and recovery, rehabilitation does not lend itself to a singular "protocolized" plan of therapy. Yet, by nature and by necessity, rehabilitation medicine operates as a functional model of "Personalized Care". Thus, the challenge for successful programs of translational rehabilitation care and research is to identify viable approaches to examine broad populations, with varied impairments and functional limitations, and to identify effective treatment responses that incorporate personalized protocols to optimize functional recovery. The Rehabilomics framework is a translational model that provides an "-omics" overlay to the scientific study of rehabilitation processes and multidimensional outcomes. Rehabilomics research provides novel opportunities to evaluate the neurobiology of complex injury or chronic disease and can be used to examine methods and treatments for person-centered care among populations with disabilities. Exemplars for application in SCI and other neurorehabilitation populations are discussed.
Collapse
Affiliation(s)
- Amy K. Wagner
- Correspondence to: Amy K. Wagner, MD Department of Physical Medicine and Rehabilitation, Safar Center for Resuscitation Research, University of Pittsburgh, 3471 5th Avenue Suite 202, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D, Kossmann T, Rosenfeld JV, Morganti-Kossmann MC. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma 2014; 31:618-29. [PMID: 24279428 DOI: 10.1089/neu.2013.3087] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Secondary hypoxia is a known contributor to adverse outcomes in patients with traumatic brain injury (TBI). Based on the evidence that hypoxia and TBI in isolation induce neuroinflammation, we investigated whether TBI combined with hypoxia enhances cerebral cytokine production. We also explored whether increased concentrations of injury biomarkers discriminate between hypoxic (Hx) and normoxic (Nx) patients, correlate to worse outcome, and depend on blood-brain barrier (BBB) dysfunction. Forty-two TBI patients with Glasgow Coma Scale ≤8 were recruited. Cerebrospinal fluid (CSF) and serum were collected over 6 days. Patients were divided into Hx (n=22) and Nx (n=20) groups. Eight cytokines were measured in the CSF; albumin, S100, myelin basic protein (MBP) and neuronal specific enolase (NSE) were quantified in serum. CSF/serum albumin quotient was calculated for BBB function. Glasgow Outcome Scale Extended (GOSE) was assessed at 6 months post-TBI. Production of granulocye macrophage-colony stimulating factor (GM-CSF) was higher, and profiles of GM-CSF, interferon (IFN)-γ and, to a lesser extent, tumor necrosis factor (TNF), were prolonged in the CSF of Hx but not Nx patients at 4-5 days post-TBI. Interleukin (IL)-2, IL-4, IL-6, and IL-10 increased similarly in both Hx and Nx groups. S100, MBP, and NSE were significantly higher in Hx patients with unfavorable outcome. Among these three biomarkers, S100 showed the strongest correlations to GOSE after TBI-Hx. Elevated CSF/serum albumin quotients lasted for 5 days post-TBI and displayed similar profiles in Hx and Nx patients. We demonstrate for the first time that post-TBI hypoxia is associated with prolonged neuroinflammation, amplified extravasation of biomarkers, and poor outcome. S100 and MBP could be implemented to track the occurrence of post-TBI hypoxia, and prompt adequate treatment.
Collapse
Affiliation(s)
- Edwin B Yan
- 1 National Trauma Research Institute, The Alfred Hospital , Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|