1
|
Barbieri RA, Barbieri FA, Zelada-Astudillo N, Moreno VC, Kalva-Filho CA, Zamunér AR. Influence of Aerobic Exercise on Functional Capacity and Maximal Oxygen Uptake in Patients With Parkinson Disease: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2025; 106:134-144. [PMID: 39374688 DOI: 10.1016/j.apmr.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVE To determine the effects of aerobic training in randomized controlled clinical trials on functional capacity, motor symptoms, and oxygen consumption in individuals with Parkinson disease (PD) through a systematic literature review and meta-analysis. DATA SOURCES PUBMED, Web of Science, CINAHL, SciELO, and Medline databases were searched to identify published studies until September 2023. STUDY SELECTION Randomized controlled clinical trials that evaluated the long-term effect of aerobic exercise in individuals with PD were included. DATA EXTRACTION Two independent reviewers extracted the data and assessed the risk of bias and the Grading of Recommendation Assessment, Development, and Evaluation. In case of disagreement, a third reviewer was consulted. DATA SYNTHESIS Thirteen studies were included in the systematic review, and the number of participants was 588 with an average age of 66.2 years (57-73y). The study's exercise intervention lasted between 6 and 70 weeks, with most studies lasting 10-12 weeks, with 3 sessions per week and an average duration of 47 minutes per session. The meta-analysis revealed that aerobic exercise is effective in enhancing maximal oxygen uptake (standardized mean difference, SMD 0.42 [95% CI, 0.18, 0.66; P=.0007]) and functional capacity (SMD 0.48 [95% CI, 0.24-0.71; P<.0001]). In addition, aerobic exercise can reduce the motor-unified Parkinson disease rating scale (mean difference-2.48 [95% CI, -3.16 to -1.81; P<.00001]) score in individuals with PD. CONCLUSIONS Aerobic exercise training conducted 2-3 times a week, with different intensities (low to high), can be an effective intervention for enhancing functional capacity, maximizing oxygen uptake, and reducing the UPDRS scores in individuals with PD.
Collapse
Affiliation(s)
| | - Fabio Augusto Barbieri
- Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Nicolle Zelada-Astudillo
- Department of Kinesiology, Laboratorio de Investigación Clínica en Kinesiología, Universidad Católica del Maule, Talca, Chile
| | - Vinicius Christianini Moreno
- Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Carlos Augusto Kalva-Filho
- Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Antonio Roberto Zamunér
- Department of Kinesiology, Laboratorio de Investigación Clínica en Kinesiología, Universidad Católica del Maule, Talca, Chile; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
2
|
Kincl V, Panovský R, Bočková M, Rektor I, Mojica‐Pisciotti ML, Máchal J. Parkinson´s disease cardiovascular symptoms: A new complex functional and structural insight. Eur J Neurol 2024; 31:e16110. [PMID: 37889890 PMCID: PMC11235594 DOI: 10.1111/ene.16110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The known impairments of the cardiovascular system in Parkinson´s disease (PD) are caused by autonomic dysfunction and manifested mainly in postural hypotension, chronotropic insufficiency, and reduced heart rate variability. Other dysfunctions, mainly stress response, arrhythmia occurrence, and heart morphology changes, are still the subject of research. OBJECTIVES To assess the heart rate and blood pressure reaction during exercise, advanced measurements of heart volumes and mass using cardiac magnetic resonance (CMR), and occurrence of arrhythmias in PD patients. METHODS Thirty PD patients (19 men, mean age 57.5 years) without known cardiac comorbidities underwent bicycle ergometry, electrocardiogram Holter monitoring and CMR. Exercise and CMR parameters were compared with controls (24 subjects for ergometry, 20 for CMR). RESULTS PD patients had lower baseline systolic blood pressure (SBP) (117.8 vs. 128.3 mmHg, p < 0.01), peak SBP (155.8 vs. 170.8 mmHg, p < 0.05), and lower heart rate increase (49.7 vs. 64.3 beats per minute, p < 0.01). PD patients had higher indexed left and right ventricular end-diastolic volumes (68.5 vs. 57.3, p = 0.003 and 73.5 vs. 61.0 mL/m2 , respectively) and also indexed left and right ventricular end-systolic volumes (44.1 vs. 39.0, p = 0.013 and 29.0 vs. 22.0 mL/m2 , p = 0.013, respectively). A high prevalence of atrial fibrillation (8 subjects, 26.7%) was found. CONCLUSIONS This novel study combining functional and structural approaches showed that PD is linked with weaker blood pressure and heart rate reaction during exercise, increased myocardial mass and heart volumes compared to controls, and a high prevalence of atrial fibrillation.
Collapse
Affiliation(s)
- Vladimír Kincl
- International Clinical Research Center, St. Anne 's University Hospital, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine/Cardiology, St. Anne 's University Hospital, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Roman Panovský
- International Clinical Research Center, St. Anne 's University Hospital, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- Department of Internal Medicine/Cardiology, St. Anne 's University Hospital, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Martina Bočková
- Department of NeurologySt. Anne 's University Hospital, Masaryk UniversityBrnoCzech Republic
- Central European Institute of TechnologyBrnoCzech Republic
| | - Ivan Rektor
- Department of NeurologySt. Anne 's University Hospital, Masaryk UniversityBrnoCzech Republic
- Central European Institute of TechnologyBrnoCzech Republic
| | - Mary Luz Mojica‐Pisciotti
- International Clinical Research Center, St. Anne 's University Hospital, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jan Máchal
- International Clinical Research Center, St. Anne 's University Hospital, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- Department of Pathological Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
3
|
Fadil R, Huether AXA, Verma AK, Brunnemer R, Blaber AP, Lou JS, Tavakolian K. Effect of Parkinson’s Disease on Cardio-postural Coupling During Orthostatic Challenge. Front Physiol 2022; 13:863877. [PMID: 35755448 PMCID: PMC9214860 DOI: 10.3389/fphys.2022.863877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac baroreflex and leg muscles activation are two important mechanisms for blood pressure regulation, failure of which could result in syncope and falls. Parkinson’s disease is known to be associated with cardiac baroreflex impairment and skeletal muscle dysfunction contributing to falls. However, the mechanical effect of leg muscles contractions on blood pressure (muscle-pump) and the baroreflex-like responses of leg muscles to blood pressure changes is yet to be comprehensively investigated. In this study, we examined the involvement of the cardiac baroreflex and this hypothesized reflex muscle-pump function (cardio-postural coupling) to maintain blood pressure in Parkinson’s patients and healthy controls during an orthostatic challenge induced via a head-up tilt test. We also studied the mechanical effect of the heart and leg muscles contractions on blood pressure. We recorded electrocardiogram blood pressure and electromyogram from 21 patients with Parkinson’s disease and 18 age-matched healthy controls during supine, head-up tilt at 70°, and standing positions with eyes open. The interaction and bidirectional causalities between the cardiovascular and musculoskeletal signals were studied using wavelet transform coherence and convergent cross mapping techniques, respectively. Parkinson’s patients displayed an impaired cardiac baroreflex and a reduced mechanical effect of the heart on blood pressure during supine, tilt and standing positions. However, the effectiveness of the cardiac baroreflex decreased in both Parkinson’s patients and healthy controls during standing as compared to supine. In addition, Parkinson’s patients demonstrated cardio-postural coupling impairment along with a mechanical muscle pump dysfunction which both could lead to dizziness and falls. Moreover, the cardiac baroreflex had a limited effect on blood pressure during standing while lower limb muscles continued to contract and maintain blood pressure via the muscle-pump mechanism. The study findings highlighted altered bidirectional coupling between heart rate and blood pressure, as well as between muscle activity and blood pressure in Parkinson’s disease. The outcomes of this study could assist in the development of appropriate physical exercise programs to reduce falls in Parkinson’s disease by monitoring the cardiac baroreflex and cardio-postural coupling effect on maintaining blood pressure.
Collapse
Affiliation(s)
- Rabie Fadil
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Asenath X. A. Huether
- Parkinson Disease Research Laboratory, Department of Neurology, Sanford Health, Fargo, ND, United States
| | - Ajay K. Verma
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Robert Brunnemer
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Andrew P. Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jau-Shin Lou
- Parkinson Disease Research Laboratory, Department of Neurology, Sanford Health, Fargo, ND, United States
- School of Medicine and Health Sciences, Department of Neurology, University of North Dakota, Grand Forks, ND, United States
| | - Kouhyar Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Kouhyar Tavakolian,
| |
Collapse
|
4
|
Kanegusuku H, Correia MA, Longano P, Okamoto E, Piemonte MEP, Cucato GG, Ritti-Dias RM. Relationship between arterial stiffness parameters and cardiovascular responses to maximal exercise testing in Parkinson's disease patients. Rev Port Cardiol 2022; 41:519-520. [DOI: 10.1016/j.repc.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 10/18/2022] Open
|
5
|
Moratelli JA, Alexandre KH, Boing L, Swarowsky A, Corrêa CL, Guimarães ACDA. Effects of binary dance rhythm compared with quaternary dance rhythm in fatigue, sleep, and daily sleepiness of individuals with Parkinson's disease: A randomized clinical trial. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220020621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Exercise prescription for Parkinson's disease patients: Dealing with cardiovascular autonomic dysfunction. Rev Port Cardiol 2021; 41:359-360. [DOI: 10.1016/j.repc.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 10/19/2022] Open
|
7
|
Kanegusuku H, Cucato GG, Longano P, Okamoto E, Piemonte MEP, Correia MA, Ritti-Dias RM. Acute Cardiovascular Responses to Self-selected Intensity Exercise in Parkinson's Disease. Int J Sports Med 2021; 43:177-182. [PMID: 34380151 DOI: 10.1055/a-1529-6480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Parkinson's disease patients frequently present cardiovascular dysfunction. Exercise with a self-selected intensity has emerged as a new strategy for exercise prescription aiming to increase exercise adherence. Thus, the current study evaluated the acute cardiovascular responses after a session of aerobic exercise at a traditional intensity and at a self-selected intensity in Parkinson's disease patients. Twenty patients (≥ 50 years old, Hoehn & Yahr 1-3 stages) performed 3 experimental sessions in random order: Traditional session (cycle ergometer, 25 min, 50 rpm, 60-80% maximum heart rate); Self-selected intensity: (cycle ergometer, 25 min, 50 rpm with self-selected intensity); and Control session (resting for 25 min). Before and after 30 min of intervention, brachial and central blood pressure (auscultatory method and pulse wave analysis, respectively), cardiac autonomic modulation (heart rate variability), and arterial stiffness (pulse wave analysis) were evaluated. Brachial and central systolic and diastolic blood pressure, heart rate, and the augmentation index increased after the control session, whereas no changes were observed after the exercise sessions (P<0.01). Pulse wave velocity and cardiac autonomic modulation parameters did not change after the three interventions. In conclusion, a single session of traditional intensity or self-selected intensity exercises similarly blunted the increase in brachial and central blood pressure and the augmentation index compared to a non-exercise control session in Parkinson's disease patients.
Collapse
Affiliation(s)
| | - Gabriel Grizzo Cucato
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Northumbria University, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Paulo Longano
- Universidade Nove de Julho - Campus Vergueiro, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
8
|
Lamotte G, Benarroch EE. What Is the Clinical Correlation of Cardiac Noradrenergic Denervation in Parkinson Disease? Neurology 2021; 96:748-753. [PMID: 33970873 DOI: 10.1212/wnl.0000000000011805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/15/2023] Open
|
9
|
Kanegusuku H, Peçanha T, Silva-Batista C, Miyasato RS, Silva Júnior NDD, Mello MTD, Piemonte MEP, Ugrinowitsch C, Forjaz CLDM. Effects of resistance training on metabolic and cardiovascular responses to a maximal cardiopulmonary exercise test in Parkinson`s disease. EINSTEIN-SAO PAULO 2021; 19:eAO5940. [PMID: 33886934 PMCID: PMC8051939 DOI: 10.31744/einstein_journal/2021ao5940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022] Open
Abstract
Objective: To evaluate the effects of resistance training on metabolic and cardiovascular responses during maximal cardiopulmonary exercise testing in patients with Parkinson’s disease. Methods: Twenty-four patients with Parkinson’s disease (modified Hoehn and Yahr stages 2 to 3) were randomly assigned to one of two groups: Control or Resistance Training. Patients in the Resistance Training Group completed an exercise program consisting of five resistance exercises (two to four sets of six to 12 repetitions maximum per set) twice a week. Patients in the Control Group maintained their usual lifestyle. Oxygen uptake, systolic blood pressure and heart rate were assessed at rest and during cycle ergometer-based maximal cardiopulmonary exercise testing at baseline and at 12 weeks. Assessments during exercise were conducted at absolute submaximal intensity (slope of the linear regression line between physiological variables and absolute workloads), at relative submaximal intensity (anaerobic threshold and respiratory compensation point) and at maximal intensity (maximal exercise). Muscle strength was also evaluated. Results: Both groups had similar increase in peak oxygen uptake after 12 weeks of training. Heart rate and systolic blood pressure measured at absolute and relative submaximal intensities and at maximal exercise intensity did not change in any of the groups. Muscle strength increased in the Resistance Training but not in the Control Group after 12 weeks. Conclusion: Resistance training increases muscle strength but does not change metabolic and cardiovascular responses during maximal cardiopulmonary exercise testing in patients with Parkinson’s disease without cardiovascular comorbidities.
Collapse
|
10
|
Zelada-Astudillo N, Moreno VC, Herrera-Santelices A, Barbieri FA, Zamunér AR. Effect of the combination of automated peripheral mechanical stimulation and physical exercise on aerobic functional capacity and cardiac autonomic control in patients with Parkinson's disease: a randomized clinical trial protocol. Trials 2021; 22:250. [PMID: 33823928 PMCID: PMC8025383 DOI: 10.1186/s13063-021-05177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Automated peripheral mechanical stimulation (AMPS) has been proposed as a new complementary therapy with potential for improving motor and cardiovascular abnormalities in Parkinson's disease (PD). However, AMPS long-term effects and its combination with physical exercise are unknown. Thus, this study aims to compare the effects of a program of 12 weeks of physical exercise with a 12-week intervention program combining physical exercise and AMPS on the aerobic capacity, cardiac autonomic control, and gait parameters in patients with PD. METHODS A randomized, controlled clinical trial will be conducted. Older volunteers with PD will be randomly assigned to one of the two groups studied: (1) exercise or (2) AMPS + exercise. Both groups will undergo an exercise program of 24 sessions, for 12 weeks, performed twice a week. Before exercise sessions, the group AMPS + exercise will receive a session of active AMPS, while the group exercise will receive an AMPS sham intervention. Shapiro-Wilk's and Levene's tests will be used to check for data normality and homogeneity, respectively. In case parametric assumptions are fulfilled, per-protocol and intention-to-treat analyses will be performed using a mixed model analysis of variance to check for group*time interaction. Significance level will be set at 5%. DISCUSSION Several non-pharmacological treatment modalities have been proposed for PD, focusing primarily on the reduction of motor and musculoskeletal disorders. Regular exercise and motor training have been shown to be effective in improving quality of life. However, treatment options in general remain limited given the high prevalence and adverse impact of these disorders. So, developing new strategies that can potentiate the improvement of motor disabilities and also improve non-motor symptoms in PD is relevant. It is expected that the participants from both groups will improve their quality of life, gait parameters, and their cardiac autonomic control, with greater improvements being observed in the group combining active AMPS and physical exercise. TRIAL REGISTRATION ClinicalTrials.gov NCT04251728 . Registered on February 05, 2020.
Collapse
Affiliation(s)
- Nicolle Zelada-Astudillo
- Laboratory of Clinical Research in Kinesiology, Department of Kinesiology, Universidad Católica del Maule, Talca, Chile
| | - Vinicius Christianini Moreno
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Andrea Herrera-Santelices
- Laboratory of Clinical Research in Kinesiology, Department of Kinesiology, Universidad Católica del Maule, Talca, Chile
- Servicio de Medicina Física y Rehabilitación, Hospital San Juan de Dios, Curicó, Chile
| | - Fabio Augusto Barbieri
- São Paulo State University (UNESP), Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Antonio Roberto Zamunér
- Laboratory of Clinical Research in Kinesiology, Department of Kinesiology, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
11
|
Sabino-Carvalho JL, Fisher JP, Vianna LC. Autonomic Function in Patients With Parkinson's Disease: From Rest to Exercise. Front Physiol 2021; 12:626640. [PMID: 33815139 PMCID: PMC8017184 DOI: 10.3389/fphys.2021.626640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder classically characterized by symptoms of motor impairment (e.g., tremor and rigidity), but also presenting with important non-motor impairments. There is evidence for the reduced activity of both the parasympathetic and sympathetic limbs of the autonomic nervous system at rest in PD. Moreover, inappropriate autonomic adjustments accompany exercise, which can lead to inadequate hemodynamic responses, the failure to match the metabolic demands of working skeletal muscle and exercise intolerance. The underlying mechanisms remain unclear, but relevant alterations in several discrete central regions (e.g., dorsal motor nucleus of the vagus nerve, intermediolateral cell column) have been identified. Herein, we critically evaluate the clinically significant and complex associations between the autonomic dysfunction, fatigue and exercise capacity in PD.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
12
|
Li X, He J, Yun J, Qin H. Lower Limb Resistance Training in Individuals With Parkinson's Disease: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Neurol 2020; 11:591605. [PMID: 33281732 PMCID: PMC7691593 DOI: 10.3389/fneur.2020.591605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 01/20/2023] Open
Abstract
Objective: Initial randomized controlled trials (RCTs) and recently released systematic reviews have identified resistance training (RT) as a modality to manage motor symptoms and improve physical functioning in individuals with Parkinson's disease (PD), although the effects are inconsistent. Therefore, we conducted an updated meta-analysis to reassess the evidence of the relationship. Methods: We performed a systematic search of studies reporting the effects of RT in PD available through major electronic databases (PubMed, Medline, Embase, Ovid, Cochrane Library, CNKI, Wanfang) through 20 July 2020. Eligible RCTs were screened based on established inclusion criteria. We extracted data on the indicators of leg strength, balance, gait capacity, and quality of life (QoL) of lower limbs. Random and fixed effects models were used for the analysis of standard mean differences (SMD) or mean differences (MD) with their 95% confidence intervals (CI). Results: Thirty-one papers from 25 independent trials compromising 1,239 subjects were selected for eligibility in this systematic review and meta-analysis. Summarized data indicated that the leg strength increased statistically significant in PD patients (SMD = 0.79, 95% CI 0.3, 1.27, P = 0.001), the balance capability was improved statistically significant in PD patients (SMD = 0.34, 95% CI 0.01, 0.66, P = 0.04), and QoL statistically significantly improved (MD = −7.22, 95% CI −12.05, −2.39, P = 0.003). For gait performance, four indicators were measured, the results as follows: fast gait velocity (MD = 0.14, 95% CI 0.06, 0.23, P = 0.001), Timed-up-and-go-test (TUG, MD = −1.17, 95% CI −2.27, −0.08, P = 0.04) and Freezing of Gait Questionnaire (FOG-Q, MD = −1.74, 95% CI −3.18, −0.3, P = 0.02) were improved statistically significant across trials, while there were no statistically significant improvement in stride length (MD = −0.05, 95% CI −0.12, 0.02, P = 0.15) in PD patients. Conclusions: Lower limb RT has positive effects during rehabilitation in individuals with PD in leg strength, QoL, and improve gait performance to a certain extent. RT also could improve balance capacity of patients, although a wide variety of tools were used, and further study is needed to confirm these findings.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Endocrinology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie He
- Department of Respiratory and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Yun
- Nursing Department of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Qin
- Department of Endocrinology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Tsai YJ, Jhong YC, Ching SH, Liao YC, Ching CH, Chuang JI. Cold Exposure After Exercise Impedes the Neuroprotective Effects of Exercise on Thermoregulation and UCP4 Expression in an MPTP-Induced Parkinsonian Mouse Model. Front Neurosci 2020; 14:573509. [PMID: 33041765 PMCID: PMC7522410 DOI: 10.3389/fnins.2020.573509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
Moderate exercise and mild hypothermia have protective effects against brain injury and neurodegeneration. Running in a cold environment alters exercise-induced hyperthermia and outcomes; however, evaluations of post-exercise cold exposure related to exercise benefits for the brain are relatively rare. We investigated the effects of 4°C cold exposure after exercise on exercise-induced thermal responses and neuroprotection in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced Parkinsonian mouse model. Male C57BL/6J mice were pretreated with MPTP for five consecutive days and follow-up treadmill exercise for 4 weeks. After 1-h running at a 22°C temperature, the mice were exposed to a 4°C environment for 2 h. An MPTP injection induced a transient drop in body and brain temperatures, while mild brain hypothermia was found to last for 4 weeks after MPTP treatment. Preventing brain hypothermia by exercise or 4°C exposure was associated with an improvement in MPTP-induced striatal uncoupling protein 4 (UCP4) downregulation and nigrostriatal dopaminergic neurodegeneration. However, 4°C exposure after exercise abrogated the exercise-induced beneficial effects and thermal responses in MPTP-treated mice, including a low amplitude of exercise-induced brain hyperthermia and body temperature while at rest after exercise. Our findings elucidate that post-exercise thermoregulation and UCP4 expression are important in the neuroprotective effects of exercise against MPTP toxicity.
Collapse
Affiliation(s)
- Yi-Ju Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yue-Cih Jhong
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hong Ching
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ching Liao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsin Ching
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Ing Chuang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
14
|
Sabino-Carvalho JL, Vianna LC. Altered cardiorespiratory regulation during exercise in patients with Parkinson's disease: A challenging non-motor feature. SAGE Open Med 2020; 8:2050312120921603. [PMID: 32435491 PMCID: PMC7222646 DOI: 10.1177/2050312120921603] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/03/2020] [Indexed: 01/27/2023] Open
Abstract
The incidence of Parkinson’s disease is increasing worldwide. The motor dysfunctions are the hallmark of the disease, but patients also experience non-motor impairments, and over 40% of the patients experience coexistent abnormalities, such as orthostatic hypotension. Exercise training has been suggested as a coping resource to alleviate Parkinson’s disease symptoms and delay disease progression. However, the body of knowledge is showing that the cardiovascular response to exercise in patients with Parkinson’s disease is altered. Adequate cardiovascular and hemodynamic adjustments to exercise are necessary to meet the metabolic demands of working skeletal muscle properly. Therefore, since Parkinson’s disease affects parasympathetic and sympathetic branches of the autonomic nervous system and the latter are crucial in ensuring these adjustments are adequately made, the understanding of these responses during exercise in this population is necessary. Several neural control mechanisms are responsible for the autonomic changes in the cardiovascular and hemodynamic systems seen during exercise. In this sense, the purpose of the present work is to review the current knowledge regarding the cardiovascular responses to dynamic and isometric/resistance exercise as well as the mechanisms by which the body maintains appropriate perfusion pressure to all organs during exercise in patients with Parkinson’s disease. Results from patients with Parkinson’s disease and animal models of Parkinson’s disease provide the reader with a well-rounded knowledge base. Through this, we will highlight what is known and not known about how the neural control of circulation is responding during exercise and the adaptations that occur when individuals exercise regularly.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
15
|
Luan X, Tian X, Zhang H, Huang R, Li N, Chen P, Wang R. Exercise as a prescription for patients with various diseases. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:422-441. [PMID: 31534817 PMCID: PMC6742679 DOI: 10.1016/j.jshs.2019.04.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/12/2019] [Accepted: 03/01/2019] [Indexed: 05/18/2023]
Abstract
A growing understanding of the benefits of exercise over the past few decades has prompted researchers to take an interest in the possibilities of exercise therapy. Because each sport has its own set of characteristics and physiological complications that tend to occur during exercise training, the effects and underlying mechanisms of exercise remain unclear. Thus, the first step in probing the effects of exercise on different diseases is the selection of an optimal exercise protocol. This review summarizes the latest exercise prescription treatments for 26 different diseases: musculoskeletal system diseases (low back pain, tendon injury, osteoporosis, osteoarthritis, and hip fracture), metabolic system diseases (obesity, type 2 diabetes, type 1 diabetes, and nonalcoholic fatty liver disease), cardio-cerebral vascular system diseases (coronary artery disease, stroke, and chronic heart failure), nervous system diseases (Parkinson's disease, Huntington's disease, Alzheimer's disease, depression, and anxiety disorders), respiratory system diseases (chronic obstructive pulmonary disease, interstitial lung disease, and after lung transplantation), urinary system diseases (chronic kidney disease and after kidney transplantation), and cancers (breast cancer, colon cancer, prostate cancer, and lung cancer). Each exercise prescription is displayed in a corresponding table. The recommended type, intensity, and frequency of exercise prescriptions are summarized, and the effects of exercise therapy on the prevention and rehabilitation of different diseases are discussed.
Collapse
Affiliation(s)
- Xin Luan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiangyang Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Haixin Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Sport, Huainan Normal University, Huainan 232038, China
| | - Rui Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Na Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Corresponding authors.
| |
Collapse
|