1
|
Chen YC, Tsai YY, Huang WM, Zhao CG, Hwang IS. Cross-frequency modulation of postural fluctuations and scalp EEG in older adults: error amplification feedback for rapid balance adjustments. GeroScience 2024; 46:5599-5613. [PMID: 38910193 PMCID: PMC11493903 DOI: 10.1007/s11357-024-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
Virtual error amplification (VEA) in visual feedback enhances attentive control over postural stability, although the neural mechanisms are still debated. This study investigated the distinct cortical control of unsteady stance in older adults using VEA through cross-frequency modulation of postural fluctuations and scalp EEG. Thirty-seven community-dwelling older adults (68.1 ± 3.6 years) maintained an upright stance on a stabilometer while receiving either VEA or real error feedback. Along with postural fluctuation dynamics, phase-amplitude coupling (PAC) and amplitude-amplitude coupling (AAC) were analyzed for postural fluctuations under 2 Hz and EEG sub-bands (theta, alpha, and beta). The results revealed a higher mean frequency of the postural fluctuation phase (p = .005) and a greater root mean square of the postural fluctuation amplitude (p = .003) with VEA compared to the control condition. VEA also reduced PAC between the postural fluctuation phase and beta-band EEG in the left frontal (p = .009), sensorimotor (p = .002), and occipital (p = .018) areas. Conversely, VEA increased the AAC of posture fluctuation amplitude and beta-band EEG in FP2 (p = .027). Neither theta nor alpha band PAC or AAC were affected by VEA. VEA optimizes postural strategies in older adults during stabilometer stance by enhancing visuospatial attentive control of postural responses and facilitating the transition of motor states against postural perturbations through a disinhibitory process. Incorporating VEA into virtual reality technology is advocated as a valuable strategy for optimizing therapeutic interventions in postural therapy, particularly to mitigate the risk of falls among older adults.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yi-Ying Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Wei-Min Huang
- Department of Management Information System, National Chung Cheng University, Chiayi, Taiwan
| | - Chen-Guang Zhao
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
2
|
Young CK, Ruan M, McNaughton N. Supramammillary Theta Oscillations in Water Maze Learning. Hippocampus 2024; 34:767-776. [PMID: 39501632 DOI: 10.1002/hipo.23646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/16/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024]
Abstract
The supramammillary nucleus (SuM) in the hypothalamus, in conjunction with the hippocampus (HPC), has been implicated through theta oscillations in various brain functions ranging from locomotion to learning and memory. While the indispensable role of the SuM in HPC theta generation in anesthetized animals is well-characterized, the SuM is not always necessary for HPC theta in awake animals. This raises questions on the precise behavioral relevance of SuM theta activity and its interaction with HPC theta activity. We used simultaneously recorded SuM and HPC local field potentials (LFPs) in a one-day water maze (WM) learning paradigm in rats (n = 8), to show that theta activities recorded from the SuM itself were not positively correlated with locomotor (swimming) speed nor acceleration, but the individual relationship between acceleration and SuM theta frequency is correlated with WM learning rates. In contrast, we found that SuM-HPC theta phase coherence is strongly correlated with swimming speed and acceleration, but these do not relate to WM learning. SuM-HPC-directed coherence analysis demonstrated no swimming kinetics nor learning rate associations, but revealed that periods of high SuM-HPC theta phase coherence are driven by the SuM at relatively low (~6.2 Hz) frequencies. Additionally, we demonstrate that the SuM and the HPC also engage in non-random, non-coherent phase coupling modes where either structure preferentially displays a ± 2 Hz difference with the other. Our data indicate SuM theta LFPs do not appear to be related to either speed coding or spatial learning in swimming rats and display non-random out-of-phase theta frequency coupling with the HPC.
Collapse
Affiliation(s)
- Calvin K Young
- Department Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Ming Ruan
- Department Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Zhuhai Municipal Women's and Children's Hospital, Zhuhai, China
| | - Neil McNaughton
- Department Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Guo Y, Zhao X, Zhang X, Li M, Liu X, Lu L, Liu J, Li Y, Zhang S, Yue L, Li J, Liu J, Zhu Y, Zhu Y, Sheng X, Yu D, Yuan K. Effects on resting-state EEG phase-amplitude coupling in insomnia disorder patients following 1 Hz left dorsolateral prefrontal cortex rTMS. Hum Brain Mapp 2023; 44:3084-3093. [PMID: 36919444 PMCID: PMC10171521 DOI: 10.1002/hbm.26264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Despite burgeoning evidence for cortical hyperarousal in insomnia disorder, the existing results on electroencephalography spectral features are highly heterogeneous. Phase-amplitude coupling, which refers to the modulation of the low-frequency phase to a high-frequency amplitude, is probably a more sensitive quantitative measure for characterizing abnormal neural oscillations and explaining the therapeutic effect of repetitive transcranial magnetic stimulation in the treatment of patients with insomnia disorder. Sixty insomnia disorder patients were randomly divided into the active and sham treatment groups to receive 4 weeks of repetitive transcranial magnetic stimulation treatment. Behavioral assessments, resting-state electroencephalography recordings, and sleep polysomnography recordings were performed before and after repetitive transcranial magnetic stimulation treatment. Forty good sleeper controls underwent the same assessment. We demonstrated that phase-amplitude coupling values in the frontal and temporal lobes were weaker in Insomnia disorder patients than in those with good sleeper controls at baseline and that phase-amplitude coupling values near the intervention area were significantly enhanced after active repetitive transcranial magnetic stimulation treatment. Furthermore, the enhancement of phase-amplitude coupling values was significantly correlated with the improvement of sleep quality. This study revealed the potential of phase-amplitude coupling in assessing the severity of insomnia disorder and the efficacy of repetitive transcranial magnetic stimulation treatment, providing new insights on the abnormal physiological mechanisms and future treatments for insomnia disorder.
Collapse
Affiliation(s)
- Yongjian Guo
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaozi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Minpeng Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoyang Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Lu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Li
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shan Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Lirong Yue
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jun Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China.,Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, People's Republic of China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Silva C, Young CK, McNaughton N. Prefrontal and hippocampal theta rhythm show anxiolytic-like changes during periaqueductal-elicited "panic" in rats. Hippocampus 2022; 32:679-694. [PMID: 35916172 PMCID: PMC9540356 DOI: 10.1002/hipo.23459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Anxiety and panic are both elicited by threat and co-occur clinically. But, at the neural level, anxiety appears to inhibit the generation of panic; and vice versa. Anxiety and panic are thought to engage more anterior (a) and mid-posterior (m) parts of the periaqueductal gray (PAG), respectively. Anxiety also engages the hippocampus and medial prefrontal cortex. Here, we tested if mPAG but not aPAG stimulation would suppress prefrontal and hippocampal theta rhythm as do anxiolytic drugs. Twelve male rats with implanted electrodes were stimulated alternately (30 s interval) in the left PAG or right reticular formation (reticularis pontis oralis [RPO]-as a positive control) with recording in the left prelimbic cortex and left and right hippocampus. PAG stimulation was set to produce freezing and RPO to produce 7-8 Hz theta rhythm before tests lasting 10 min on each of 5 days. mPAG stimulation decreased, and aPAG increased, theta power at all sites during elicited freezing. mPAG, but not aPAG, stimulation decreased prefrontal theta frequency. Stimulation did not substantially change circuit dynamics (pairwise phase consistency and partial directed coherence). Together with previous reports, our data suggest that panic- and anxiety-control systems are mutually inhibitory, and neural separation of anxiety and panic extends down to the aPAG and mPAG, respectively. Our findings are consistent with recent proposals that fear and anxiety are controlled by parallel neural hierarchies extending from PAG to the prefrontal cortex.
Collapse
Affiliation(s)
- Carlos Silva
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
ACC-BLA functional connectivity disruption in allergic inflammation is associated with anxiety. Sci Rep 2022; 12:2731. [PMID: 35177766 PMCID: PMC8854589 DOI: 10.1038/s41598-022-06748-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a chronic inflammatory respiratory disease. Psychiatric disorders, including anxiety are associated with poorer treatment response and disease control in asthmatic patients. To date, there is no experimental evidence describing the role of peripheral inflammation on the oscillatory activities in the anterior cingulate cortex (ACC) and basolateral amygdala (BLA), two major brain structures modulating anxiety. In the present work we evaluated lung and brain inflammatory responses, anxiety-like behavior, in association with oscillatory features of the ACC-BLA circuit in an animal model of allergic inflammation. Our data showed that allergic inflammation induced anxiety-like behavior and reactivation of microglia and astrocytes in ACC and BLA. Allergic inflammation also enhanced neuronal activities and functional connectivity of the ACC-BLA circuit which were correlated with the level of anxiety. Together, we suggest that disruption in the dynamic oscillatory activities of the ACC-BLA circuit, maybe due to regional inflammation, is an underlying mechanism of allergic asthma-induced anxiety-like behavior. Our findings could pave the way for better understanding the neuro-pathophysiology of the psychiatric disorders observed in asthmatic patients, possibly leading to develop novel treatment strategies.
Collapse
|
6
|
Agadagba SK, Eldaly ABM, Chan LLH. Transcorneal Electrical Stimulation Induces Long-Lasting Enhancement of Brain Functional and Directional Connectivity in Retinal Degeneration Mice. Front Cell Neurosci 2022; 16:785199. [PMID: 35197826 PMCID: PMC8860236 DOI: 10.3389/fncel.2022.785199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
To investigate neuromodulation of functional and directional connectivity features in both visual and non-visual brain cortices after short-term and long-term retinal electrical stimulation in retinal degeneration mice. We performed spontaneous electrocorticography (ECoG) in retinal degeneration (rd) mice following prolonged transcorneal electrical stimulation (pTES) at varying currents (400, 500 and 600 μA) and different time points (transient or day 1 post-stimulation, 1-week post-stimulation and 2-weeks post-stimulation). We also set up a sham control group of rd mice which did not receive any electrical stimulation. Subsequently we analyzed alterations in cross-frequency coupling (CFC), coherence and directional connectivity of the primary visual cortex and the prefrontal cortex. It was observed that the sham control group did not display any significant changes in brain connectivity across all stages of electrical stimulation. For the stimulated groups, we observed that transient electrical stimulation of the retina did not significantly alter brain coherence and connectivity. However, for 1-week post-stimulation, we identified enhanced increase in theta-gamma CFC. Meanwhile, enhanced coherence and directional connectivity appeared predominantly in theta, alpha and beta oscillations. These alterations occurred in both visual and non-visual brain regions and were dependent on the current amplitude of stimulation. Interestingly, 2-weeks post-stimulation demonstrated long-lasting enhancement in network coherence and connectivity patterns at the level of cross-oscillatory interaction, functional connectivity and directional inter-regional communication between the primary visual cortex and prefrontal cortex. Application of electrical stimulation to the retina evidently neuromodulates brain coherence and connectivity of visual and non-visual cortices in retinal degeneration mice and the observed alterations are largely maintained. pTES holds strong possibility of modulating higher cortical functions including pathways of cognition, awareness, emotion and memory.
Collapse
Affiliation(s)
- Stephen K. Agadagba
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Abdelrahman B. M. Eldaly
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Leanne Lai Hang Chan,
| |
Collapse
|
7
|
Li Z, Li S, Yu T, Li X. Measuring the Coupling Direction between Neural Oscillations with Weighted Symbolic Transfer Entropy. ENTROPY (BASEL, SWITZERLAND) 2020; 22:e22121442. [PMID: 33371251 PMCID: PMC7767336 DOI: 10.3390/e22121442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 05/30/2023]
Abstract
Neural oscillations reflect rhythmic fluctuations in the synchronization of neuronal populations and play a significant role in neural processing. To further understand the dynamic interactions between different regions in the brain, it is necessary to estimate the coupling direction between neural oscillations. Here, we developed a novel method, termed weighted symbolic transfer entropy (WSTE), that combines symbolic transfer entropy (STE) and weighted probability distribution to measure the directionality between two neuronal populations. The traditional STE ignores the degree of difference between the amplitude values of a time series. In our proposed WSTE method, this information is picked up by utilizing a weighted probability distribution. The simulation analysis shows that the WSTE method can effectively estimate the coupling direction between two neural oscillations. In comparison with STE, the new method is more sensitive to the coupling strength and is more robust against noise. When applied to epileptic electrocorticography data, a significant coupling direction from the anterior nucleus of thalamus (ANT) to the seizure onset zone (SOZ) was detected during seizures. Considering the superiorities of the WSTE method, it is greatly advantageous to measure the coupling direction between neural oscillations and consequently characterize the information flow between different brain regions.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering (School of Software), Yanshan University, Qinhuangdao 066004, China; (Z.L.); (S.L.)
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao 066004, China
| | - Shuaifei Li
- School of Information Science and Engineering (School of Software), Yanshan University, Qinhuangdao 066004, China; (Z.L.); (S.L.)
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Capital Medical University, Beijing 100053, China;
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Young CK, Ruan M, McNaughton N. Speed modulation of hippocampal theta frequency and amplitude predicts water maze learning. Hippocampus 2020; 31:201-212. [PMID: 33171002 DOI: 10.1002/hipo.23281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Theta oscillations in the hippocampus have many behavioral correlates, with the magnitude and vigor of ongoing movement being the most salient. Many consider correlates of locomotion with hippocampal theta to be a confound in delineating theta contributions to cognitive processes. Theory and empirical experiments suggest theta-movement relationships are important if spatial navigation is to support higher cognitive processes. In the current study, we tested if variations in speed modulation of hippocampal theta can predict spatial learning rates in the water maze. Using multi-step regression, we find that the magnitude and robustness of hippocampal theta frequency versus speed scaling can predict water maze learning rates. Using a generalized linear model, we also demonstrate that speed and water maze learning are the best predictors of hippocampal theta frequency and amplitude. Our findings suggest movement-speed correlations with hippocampal theta frequency may be actively used in spatial learning.
Collapse
Affiliation(s)
- Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Ming Ruan
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Zhuhai Municipal Women's and Children's Hospital, Zhuhai, China
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
O'Connell MN, Barczak A, McGinnis T, Mackin K, Mowery T, Schroeder CE, Lakatos P. The Role of Motor and Environmental Visual Rhythms in Structuring Auditory Cortical Excitability. iScience 2020; 23:101374. [PMID: 32738615 PMCID: PMC7394914 DOI: 10.1016/j.isci.2020.101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 10/26/2022] Open
Abstract
Previous studies indicate that motor sampling patterns modulate neuronal excitability in sensory brain regions by entraining brain rhythms, a process termed motor-initiated entrainment. In addition, rhythms of the external environment are also capable of entraining brain rhythms. Our first goal was to investigate the properties of motor-initiated entrainment in the auditory system using a prominent visual motor sampling pattern in primates, saccades. Second, we wanted to determine whether/how motor-initiated entrainment interacts with visual environmental entrainment. We examined laminar profiles of neuronal ensemble activity in primary auditory cortex and found that whereas motor-initiated entrainment has a suppressive effect, visual environmental entrainment has an enhancive effect. We also found that these processes are temporally coupled, and their temporal relationship ensures that their effect on excitability is complementary rather than interfering. Altogether, our results demonstrate that motor and sensory systems continuously interact in orchestrating the brain's context for the optimal sampling of our multisensory environment.
Collapse
Affiliation(s)
- Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Annamaria Barczak
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Tammy McGinnis
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Kieran Mackin
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Todd Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Charles E Schroeder
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Peter Lakatos
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
10
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
11
|
De Pascalis V, Vecchio A, Cirillo G. Resting anxiety increases EEG delta–beta correlation: Relationships with the Reinforcement Sensitivity Theory Personality traits. PERSONALITY AND INDIVIDUAL DIFFERENCES 2020. [DOI: 10.1016/j.paid.2019.109796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Dehdar K, Mahdidoust S, Salimi M, Gholami-Mahtaj L, Nazari M, Mohammadi S, Dehghan S, Jamaati H, Khosrowabadi R, Nasiraei-Moghaddam A, Barkley V, Javan M, Mirnajafi-Zadeh J, Sumiyoshi A, Raoufy MR. Allergen-induced anxiety-like behavior is associated with disruption of medial prefrontal cortex - amygdala circuit. Sci Rep 2019; 9:19586. [PMID: 31863052 PMCID: PMC6925103 DOI: 10.1038/s41598-019-55539-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Anxiety is prevalent in asthma, and is associated with disease severity and poor quality of life. However, no study to date provides direct experimental evidence for the effect of allergic inflammation on the structure and function of medial prefrontal cortex (mPFC) and amygdala, which are essential regions for modulating anxiety and its behavioral expression. We assessed the impact of ovalbumin (OVA)-induced allergic inflammation on the appearance of anxiety-like behavior, mPFC and amygdala volumes using MRI, and the mPFC-amygdala circuit activity in sensitized rats. Our findings exhibited that the OVA challenge in sensitized rats induced anxiety-like behavior, and led to more activated microglia and astrocytes in the mPFC and amygdala. We also found a negative correlation between anxiety-like behavior and amygdala volume. Moreover, OVA challenge in sensitized rats was associated with increases in mPFC and amygdala activity, elevation of amygdala delta-gamma coupling, and the enhancement of functional connectivity within mPFC-amygdala circuit – accompanied by an inverted direction of information transferred from the amygdala to the mPFC. We indicated that disrupting the dynamic interactions of the mPFC-amygdala circuit may contribute to the induction of anxiety-related behaviors with asthma. These findings could provide new insight to clarify the underlying mechanisms of allergic inflammation-induced psychiatric disorders related to asthma.
Collapse
Affiliation(s)
- Kolsoum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shirin Mahdidoust
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Gholami-Mahtaj
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadeq Mohammadi
- School of ECE, College of Engineering, University of Tehran, Tehran, Iran
| | - Samaneh Dehghan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Nasiraei-Moghaddam
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Brain Sciences and Cognition, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akira Sumiyoshi
- Department of Functional Brain Imaging, IDAC, Tohoku University, Sendai, Japan.,National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Maryland, United States of America
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Salimi M, Ghazvineh S, Zare M, Parsazadegan T, Dehdar K, Nazari M, Mirnajafi-Zadeh J, Jamaati H, Raoufy MR. Distraction of olfactory bulb-medial prefrontal cortex circuit may induce anxiety-like behavior in allergic rhinitis. PLoS One 2019; 14:e0221978. [PMID: 31509547 PMCID: PMC6738655 DOI: 10.1371/journal.pone.0221978] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Allergic rhinitis is a chronic inflammatory disease of the upper respiratory tract, which is associated with high incidence of anxiety symptom. There is evidence that medial prefrontal cortex modulates anxiety-related behaviors and receives projections from olfactory bulb. Since olfactory dysfunction has been reported in allergic rhinitis, we aimed to evaluate anxiety-like behavior and oscillations of olfactory bulb-medial prefrontal cortex circuit in an animal model of allergic rhinitis. The number of open arm entries in elevated zero maze was significantly reduced in sensitized rats exposed to intranasal ovalbumin compared to the control group, which was indicating the enhancement of anxiety-like behavior in allergic rhinitis animals. Analysis of local field potentials in olfactory bulb and medial prefrontal cortex during immobility and exploration state showed that anxiety-like behavior induced by allergic rhinitis was in association with increased activity of medial prefrontal cortex and enhancement of olfactory bulb-medial prefrontal cortex coupling in delta and theta bands. Moreover, in allergic rhinitis animals, theta strongly coordinates local gamma activity in olfactory bulb and medial prefrontal cortex, which means to have a strong local theta/gamma coupling. We suggested that disruption of olfactory bulb-medial prefrontal cortex circuit due to allergic reactions might have a governing role for inducing anxiety-like behavior in the allergic rhinitis experimental model.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Parsazadegan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kolsum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Frontal delta-beta cross-frequency coupling in high and low social anxiety: An index of stress regulation? COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:764-777. [PMID: 29777479 PMCID: PMC6096649 DOI: 10.3758/s13415-018-0603-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cross-frequency coupling (CFC) between frontal delta (1–4 Hz) and beta (14–30 Hz) oscillations has been suggested as a candidate neural correlate of social anxiety disorder, a disorder characterized by fear and avoidance of social and performance situations. Prior studies have used amplitude-amplitude correlation (AAC) as a CFC measure and hypothesized it as a candidate neural mechanism of affective control. However, using this metric has yielded inconsistent results regarding the direction of CFC, and the functional significance of coupling strength is uncertain. To offer a better understanding of CFC in social anxiety, we compared frontal delta-beta AAC with phase-amplitude coupling (PAC) – a mechanism for information transfer through neural circuits. Twenty high socially anxious (HSA) and 32 low socially anxious (LSA) female undergraduates participated in a social performance task (SPT). Delta-beta PAC and AAC were estimated during the resting state, as well as the anticipation and recovery conditions. Results showed significantly more AAC in LSA than HSA participants during early anticipation, as well as significant values during all conditions in LSA participants only. PAC did not distinguish between LSA and HSA participants, and instead was found to correlate with state nervousness during early anticipation, but in LSA participants only. Together, these findings are interpreted to suggest that delta-beta AAC is a plausible neurobiological index of adaptive stress regulation and can distinguish between trait high and low social anxiety during stress, while delta-beta PAC might be sensitive enough to reflect mild state anxiety in LSA participants.
Collapse
|
15
|
Comolatti R, Pigorini A, Casarotto S, Fecchio M, Faria G, Sarasso S, Rosanova M, Gosseries O, Boly M, Bodart O, Ledoux D, Brichant JF, Nobili L, Laureys S, Tononi G, Massimini M, Casali AG. A fast and general method to empirically estimate the complexity of brain responses to transcranial and intracranial stimulations. Brain Stimul 2019; 12:1280-1289. [PMID: 31133480 DOI: 10.1016/j.brs.2019.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Perturbational Complexity Index (PCI) was recently introduced to assess the capacity of thalamocortical circuits to engage in complex patterns of causal interactions. While showing high accuracy in detecting consciousness in brain-injured patients, PCI depends on elaborate experimental setups and offline processing, and has restricted applicability to other types of brain signals beyond transcranial magnetic stimulation and high-density EEG (TMS/hd-EEG) recordings. OBJECTIVE We aim to address these limitations by introducing PCIST, a fast method for estimating perturbational complexity of any given brain response signal. METHODS PCIST is based on dimensionality reduction and state transitions (ST) quantification of evoked potentials. The index was validated on a large dataset of TMS/hd-EEG recordings obtained from 108 healthy subjects and 108 brain-injured patients, and tested on sparse intracranial recordings (SEEG) of 9 patients undergoing intracranial single-pulse electrical stimulation (SPES) during wakefulness and sleep. RESULTS When calculated on TMS/hd-EEG potentials, PCIST performed with the same accuracy as the original PCI, while improving on the previous method by being computed in less than a second and requiring a simpler set-up. In SPES/SEEG signals, the index was able to quantify a systematic reduction of intracranial complexity during sleep, confirming the occurrence of state-dependent changes in the effective connectivity of thalamocortical circuits, as originally assessed through TMS/hd-EEG. CONCLUSIONS PCIST represents a fundamental advancement towards the implementation of a reliable and fast clinical tool for the bedside assessment of consciousness as well as a general measure to explore the neuronal mechanisms of loss/recovery of brain complexity across scales and models.
Collapse
Affiliation(s)
- Renzo Comolatti
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, 12231-280, Brazil
| | - Andrea Pigorini
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, 20157, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, 20157, Italy
| | - Matteo Fecchio
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, 20157, Italy
| | - Guilherme Faria
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, 12231-280, Brazil
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, 20157, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, 20157, Italy
| | - Olivia Gosseries
- GIGA-Consciousness, GIGA Research, University of Liège, Liège, 4000, Belgium; Coma Science Group, University Hospital of Liège, Liège, 4000, Belgium
| | - Mélanie Boly
- Department of Psychiatry, University of Wisconsin, Madison, 53719, USA
| | - Olivier Bodart
- GIGA-Consciousness, GIGA Research, University of Liège, Liège, 4000, Belgium; Coma Science Group, University Hospital of Liège, Liège, 4000, Belgium
| | - Didier Ledoux
- GIGA-Consciousness, GIGA Research, University of Liège, Liège, 4000, Belgium
| | - Jean-François Brichant
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Liège, Liège, 4000, Belgium
| | - Lino Nobili
- Center of Epilepsy Surgery "C. Munari", Department of Neuroscience, Niguarda Hospital, Milan, 20162, Italy; Child Neuropsychiatry, IRCCS G. Gaslini, DINOGMI, University of Genoa, Genova, 16147, Italy
| | - Steven Laureys
- GIGA-Consciousness, GIGA Research, University of Liège, Liège, 4000, Belgium; Coma Science Group, University Hospital of Liège, Liège, 4000, Belgium
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, 53719, USA
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, 20157, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, 20148, Italy
| | - Adenauer G Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, 12231-280, Brazil.
| |
Collapse
|
16
|
Scarpelli S, Bartolacci C, D'Atri A, Gorgoni M, De Gennaro L. The Functional Role of Dreaming in Emotional Processes. Front Psychol 2019; 10:459. [PMID: 30930809 PMCID: PMC6428732 DOI: 10.3389/fpsyg.2019.00459] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/15/2019] [Indexed: 02/05/2023] Open
Abstract
Dream experience (DE) represents a fascinating condition linked to emotional processes and the human inner world. Although the overlap between REM sleep and dreaming has been overcome, several studies point out that emotional and perceptually vivid contents are more frequent when reported upon awakenings from this sleep stage. Actually, it is well-known that REM sleep plays a pivotal role in the processing of salient and emotional waking-life experiences, strongly contributing to the emotional memory consolidation. In this vein, we highlighted that, to some extent, neuroimaging studies showed that the processes that regulate dreaming and emotional salience in sleep mentation share similar neural substrates of those controlling emotions during wakefulness. Furthermore, the research on EEG correlates of the presence/absence of DE and the results on EEG pattern related to the incorporated memories converged to assign a crucial role of REM theta oscillations in emotional re-processing. In particular, the theta activity is involved in memory processes during REM sleep as well as during the waking state, in line with the continuity hypothesis. Also, the gamma activity seems to be related to emotional processes and dream recall as well as to lucid dreams. Interestingly, similar EEG correlates of DE have been found in clinical samples when nightmares or dreams occur. Research on clinical samples revealed that promoting the rehearsal of frightening contents aimed to change them is a promising method to treat nightmares, and that lucid dreams are associated with an attenuation of nightmares. In this view, DE can defuse emotional traumatic memories when the emotional regulation and the fear extinction mechanisms are compromised by traumatic and frightening events. Finally, dreams could represent a sort of simulation of reality, providing the possibility to create a new scenario with emotional mastery elements to cope with dysphoric items included in nightmares. In addition, it could be hypothesized that the insertion of bizarre items besides traumatic memories might be functional to "impoverish" the negative charge of the experiences.
Collapse
Affiliation(s)
| | | | | | | | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Rothmaler K, Ivanova G. The HEURECA method: Tracking multiple phase coupling dynamics on a single trial basis. J Neurosci Methods 2018; 307:138-148. [PMID: 29936071 DOI: 10.1016/j.jneumeth.2018.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although acquisition techniques have improved tremendously, the neuroscientific understanding of complex cognitive phenomena is still incomplete. One of the reasons for this shortcoming may be the lack of sophisticated signal processing methods. Complex cognitive phenomena usually involve various mental subprocesses whose temporal occurrence varies from trial to trial. Mostly, these mental subprocesses require large-scale integration processes between multiple brain areas that are most likely mediated by complex, non-linear phase coupling mechanisms. Consequently, a spatiotemporal analysis of complex, multivariate phase synchronization patterns on a single trial basis is necessary. NEW METHOD This paper introduces the HEURECA method (How to Evaluate and Uncover Recurring EEG Coupling Arrangements) that enables the dynamic detection of distinguishable multivariate functional connectivity states in the electroencephalogram. HEURECA adaptively divides a trial into segments of quasi-stable phase coupling topographies and assigns similar topographies to the same synchrostate cluster. RESULTS HEURECA is evaluated by means of simulated data. The results show that it reliably reconstructs a time series of recurring phase coupling topographies and successfully gathers them into clusters of interpretable neural synchrostates. The advantages and unique features of HEURECA are further illustrated by investigating the popular complex cognitive phenomenon insight. COMPARISON WITH EXISTING METHODS Unlike existing methods, HEURECA detects complex phase relationships between more than two signals and is applicable to single trials. CONCLUSIONS Since HEURECA is applicable to all kinds of circular data, it not only provides new insights into insight, but also into a variety of other phenomena in neuroscience, physics or other scientific fields.
Collapse
Affiliation(s)
- Katrin Rothmaler
- Department of Computer Science, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin, Germany; Unter den Linden 6, 10099 Berlin, Germany.
| | - Galina Ivanova
- Department of Computer Science, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin, Germany; Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
18
|
The bispectrum and its relationship to phase-amplitude coupling. Neuroimage 2018; 173:518-539. [DOI: 10.1016/j.neuroimage.2018.02.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/05/2018] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
|
19
|
Young CK, Ruan M, McNaughton N. A Critical Assessment of Directed Connectivity Estimates with Artificially Imposed Causality in the Supramammillary-Septo-Hippocampal Circuit. Front Syst Neurosci 2017; 11:72. [PMID: 29033799 PMCID: PMC5627232 DOI: 10.3389/fnsys.2017.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022] Open
Abstract
Algorithms for estimating directed connectivity have become indispensable to further understand the neurodynamics between functionally coupled brain areas. The evaluation of directed connectivity on the propagation of brain activity has largely been based on simulated data or toy models, where various hidden properties of neurophysiological data may not be fully recapitulated. In this study, directionality was unequivocally manipulated in the freely moving rat in a unique dataset, where normal oscillatory interactions between the supramammillary nucleus (SuM) and hippocampus (HPC) were attenuated by temporary medial septal (MS) inactivation, and replaced by electrical stimulation of the fornix to evaluate the performance of several directed connectivity assessment methods. The directed transfer function, partial directed coherence, directed coherence, pair-wise Geweke-Granger causality, phase slope index, and phase transfer entropy, all found SuM to HPC theta propagation when the MS is inactivated, and HPC activity was driven by peaks of simultaneously recorded SuM theta. As expected from theoretical expectations and simulated data, signal features including coupling strength, signal-to-noise ratio, and stationarity all weakly affected directed connectivity measures. We conclude that all the examined directed connectivity estimates correctly identify artificially imposed uni-directionality of brain oscillations in freely moving animals. Non-auto-regressive modeling based methods appear to be the most robust, and are least affected by inherent features in data such as signal-to-noise ratio and stationarity.
Collapse
Affiliation(s)
- Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Ming Ruan
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Wuhan Asia Heart Hospital, Wuhan, China
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Ruan M, Young CK, McNaughton N. Bi-Directional Theta Modulation between the Septo-Hippocampal System and the Mammillary Area in Free-Moving Rats. Front Neural Circuits 2017; 11:62. [PMID: 28955209 PMCID: PMC5600904 DOI: 10.3389/fncir.2017.00062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/25/2017] [Indexed: 01/07/2023] Open
Abstract
Hippocampal (HPC) theta oscillations have long been linked to various functions of the brain. Many cortical and subcortical areas that also exhibit theta oscillations have been linked to functional circuits with the hippocampus on the basis of coupled activities at theta frequencies. We examine, in freely moving rats, the characteristics of diencephalic theta local field potentials (LFPs) recorded in the supramammillary/mammillary (SuM/MM) areas that are bi-directionally connected to the HPC through the septal complex. Using partial directed coherence (PDC), we find support for previous suggestions that SuM modulates HPC theta at higher frequencies. We find weak separation of SuM and MM by dominant theta frequency recorded locally. Contrary to oscillatory cell activities under anesthesia where SuM is insensitive, but MM is sensitive to medial septal (MS) inactivation, theta LFPs persisted and became indistinguishable after MS-inactivation. However, MS-inactivation attenuated SuM/MM theta power, while increasing the frequency of SuM/MM theta. MS-inactivation also reduced root mean squared power in both HPC and SuM/MM equally, but reduced theta power differentially in the time domain. We provide converging evidence that SuM is preferentially involved in coding HPC theta at higher frequencies, and that the MS-HPC circuit normally imposes a frequency-limiting modulation over the SuM/MM area as suggested by cell-based recordings in anesthetized animals. In addition, we provide evidence that the postulated SuM-MS-HPC-MM circuit is under complex bi-directional control, rather than SuM and MM having roles as unidirectional relays in the network.
Collapse
Affiliation(s)
- Ming Ruan
- Department of Psychology and Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Department of Pediatrics and Neonatal Services, Zhuhai Municipal Women's and Children's HospitalGuangdong, China
| | - Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of OtagoDunedin, New Zealand
| |
Collapse
|
21
|
Yang Y, Solis-Escalante T, van de Ruit M, van der Helm FCT, Schouten AC. Nonlinear Coupling between Cortical Oscillations and Muscle Activity during Isotonic Wrist Flexion. Front Comput Neurosci 2016; 10:126. [PMID: 27999537 PMCID: PMC5138209 DOI: 10.3389/fncom.2016.00126] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/25/2016] [Indexed: 11/23/2022] Open
Abstract
Coupling between cortical oscillations and muscle activity facilitates neuronal communication during motor control. The linear part of this coupling, known as corticomuscular coherence, has received substantial attention, even though neuronal communication underlying motor control has been demonstrated to be highly nonlinear. A full assessment of corticomuscular coupling, including the nonlinear part, is essential to understand the neuronal communication within the sensorimotor system. In this study, we applied the recently developed n:m coherence method to assess nonlinear corticomuscular coupling during isotonic wrist flexion. The n:m coherence is a generalized metric for quantifying nonlinear cross-frequency coupling as well as linear iso-frequency coupling. By using independent component analysis (ICA) and equivalent current dipole source localization, we identify four sensorimotor related brain areas based on the locations of the dipoles, i.e., the contralateral primary sensorimotor areas, supplementary motor area (SMA), prefrontal area (PFA) and posterior parietal cortex (PPC). For all these areas, linear coupling between electroencephalogram (EEG) and electromyogram (EMG) is present with peaks in the beta band (15–35 Hz), while nonlinear coupling is detected with both integer (1:2, 1:3, 1:4) and non-integer (2:3) harmonics. Significant differences between brain areas is shown in linear coupling with stronger coherence for the primary sensorimotor areas and motor association cortices (SMA, PFA) compared to the sensory association area (PPC); but not for the nonlinear coupling. Moreover, the detected nonlinear coupling is similar to previously reported nonlinear coupling of cortical activity to somatosensory stimuli. We suggest that the descending motor pathways mainly contribute to linear corticomuscular coupling, while nonlinear coupling likely originates from sensory feedback.
Collapse
Affiliation(s)
- Yuan Yang
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands
| | - Teodoro Solis-Escalante
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands
| | - Mark van de Ruit
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands
| | - Frans C T van der Helm
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology Delft, Netherlands
| | - Alfred C Schouten
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of TwenteEnschede, Netherlands
| |
Collapse
|
22
|
Yang Y, Solis-Escalante T, van der Helm FCT, Schouten AC. A Generalized Coherence Framework for Detecting and Characterizing Nonlinear Interactions in the Nervous System. IEEE Trans Biomed Eng 2016; 63:2629-2637. [DOI: 10.1109/tbme.2016.2585097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Ashwin P, Coombes S, Nicks R. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2016; 6:2. [PMID: 26739133 PMCID: PMC4703605 DOI: 10.1186/s13408-015-0033-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/30/2015] [Indexed: 05/20/2023]
Abstract
The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear-for example, heteroclinic network attractors. In this review we present a set of mathematical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical framework for further successful applications of mathematics to understanding network dynamics in neuroscience.
Collapse
Affiliation(s)
- Peter Ashwin
- Centre for Systems Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, Exeter, EX4 4QF, UK.
| | - Stephen Coombes
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Rachel Nicks
- School of Mathematics, University of Birmingham, Watson Building, Birmingham, B15 2TT, UK.
| |
Collapse
|
24
|
Hyafil A, Giraud AL, Fontolan L, Gutkin B. Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions. Trends Neurosci 2016; 38:725-740. [PMID: 26549886 DOI: 10.1016/j.tins.2015.09.001] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/14/2015] [Accepted: 09/01/2015] [Indexed: 10/22/2022]
Abstract
Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions.
Collapse
Affiliation(s)
- Alexandre Hyafil
- Universitat Pompeu Fabra, Theoretical and Computational Neuroscience, Roc Boronat 138, 08018 Barcelona, Spain; Research Unit, Parc Sanitari Sant Joan de Déu and Universitat de Barcelona, Esplugues de Llobregat, Barcelona, Spain.
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Campus Biotech, 9 chemin des Mines, 1211 Geneva, Switzerland
| | - Lorenzo Fontolan
- Department of Neuroscience, University of Geneva, Campus Biotech, 9 chemin des Mines, 1211 Geneva, Switzerland
| | - Boris Gutkin
- Group for Neural Theory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, 29 rue d'Ulm, 75005 Paris, France; Centre for Cognition and Decision Making, National Research University Higher School of Economics, Myasnitskaya Street 20, Moscow 101000, Russia
| |
Collapse
|
25
|
Kovach CK, Gander PE. The demodulated band transform. J Neurosci Methods 2015; 261:135-54. [PMID: 26711370 DOI: 10.1016/j.jneumeth.2015.12.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/24/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Windowed Fourier decompositions (WFD) are widely used in measuring stationary and non-stationary spectral phenomena and in describing pairwise relationships among multiple signals. Although a variety of WFDs see frequent application in electrophysiological research, including the short-time Fourier transform, continuous wavelets, bandpass filtering and multitaper-based approaches, each carries certain drawbacks related to computational efficiency and spectral leakage. This work surveys the advantages of a WFD not previously applied in electrophysiological settings. NEW METHODS A computationally efficient form of complex demodulation, the demodulated band transform (DBT), is described. RESULTS DBT is shown to provide an efficient approach to spectral estimation with minimal susceptibility to spectral leakage. In addition, it lends itself well to adaptive filtering of non-stationary narrowband noise. COMPARISON WITH EXISTING METHODS A detailed comparison with alternative WFDs is offered, with an emphasis on the relationship between DBT and Thomson's multitaper. DBT is shown to perform favorably in combining computational efficiency with minimal introduction of spectral leakage. CONCLUSION DBT is ideally suited to efficient estimation of both stationary and non-stationary spectral and cross-spectral statistics with minimal susceptibility to spectral leakage. These qualities are broadly desirable in many settings.
Collapse
Affiliation(s)
- Christopher K Kovach
- Department of Neurosurgery, The University of Iowa College of Medicine, United States.
| | - Phillip E Gander
- Department of Neurosurgery, The University of Iowa College of Medicine, United States
| |
Collapse
|
26
|
O'Connell MN, Barczak A, Ross D, McGinnis T, Schroeder CE, Lakatos P. Multi-Scale Entrainment of Coupled Neuronal Oscillations in Primary Auditory Cortex. Front Hum Neurosci 2015; 9:655. [PMID: 26696866 PMCID: PMC4673342 DOI: 10.3389/fnhum.2015.00655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/17/2015] [Indexed: 12/02/2022] Open
Abstract
Earlier studies demonstrate that when the frequency of rhythmic tone sequences or streams is task relevant, ongoing excitability fluctuations (oscillations) of neuronal ensembles in primary auditory cortex (A1) entrain to stimulation in a frequency dependent way that sharpens frequency tuning. The phase distribution across A1 neuronal ensembles at time points when attended stimuli are predicted to occur reflects the focus of attention along the spectral attribute of auditory stimuli. This study examined how neuronal activity is modulated if only the temporal features of rhythmic stimulus streams are relevant. We presented macaques with auditory clicks arranged in 33 Hz (gamma timescale) quintets, repeated at a 1.6 Hz (delta timescale) rate. Such multi-scale, hierarchically organized temporal structure is characteristic of vocalizations and other natural stimuli. Monkeys were required to detect and respond to deviations in the temporal pattern of gamma quintets. As expected, engagement in the auditory task resulted in the multi-scale entrainment of delta- and gamma-band neuronal oscillations across all of A1. Surprisingly, however, the phase-alignment, and thus, the physiological impact of entrainment differed across the tonotopic map in A1. In the region of 11–16 kHz representation, entrainment most often aligned high excitability oscillatory phases with task-relevant events in the input stream and thus resulted in response enhancement. In the remainder of the A1 sites, entrainment generally resulted in response suppression. Our data indicate that the suppressive effects were due to low excitability phase delta oscillatory entrainment and the phase amplitude coupling of delta and gamma oscillations. Regardless of the phase or frequency, entrainment appeared stronger in left A1, indicative of the hemispheric lateralization of auditory function.
Collapse
Affiliation(s)
- M N O'Connell
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA
| | - A Barczak
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA
| | - D Ross
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA
| | - T McGinnis
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA
| | - C E Schroeder
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, Columbia College of Physicians and Surgeons New York, NY, USA
| | - P Lakatos
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute Orangeburg, NY, USA ; Department of Psychiatry, NYU School of Medicine New York, NY, USA
| |
Collapse
|
27
|
Yang Y, Solis-Escalante T, Yao J, Daffertshofer A, Schouten AC, van der Helm FCT. A General Approach for Quantifying Nonlinear Connectivity in the Nervous System Based on Phase Coupling. Int J Neural Syst 2015; 26:1550031. [PMID: 26404514 DOI: 10.1142/s0129065715500318] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interaction between distant neuronal populations is essential for communication within the nervous system and can occur as a highly nonlinear process. To better understand the functional role of neural interactions, it is important to quantify the nonlinear connectivity in the nervous system. We introduce a general approach to measure nonlinear connectivity through phase coupling: the multi-spectral phase coherence (MSPC). Using simulated data, we compare MSPC with existing phase coupling measures, namely n : m synchronization index and bi-phase locking value. MSPC provides a system description, including (i) the order of the nonlinearity, (ii) the direction of interaction, (iii) the time delay in the system, and both (iv) harmonic and (v) intermodulation coupling beyond the second order; which are only partly revealed by other methods. We apply MSPC to analyze data from a motor control experiment, where subjects performed isotonic wrist flexions while receiving movement perturbations. MSPC between the perturbation, EEG and EMG was calculated. Our results reveal directional nonlinear connectivity in the afferent and efferent pathways, as well as the time delay (43 ± 8 ms) between the perturbation and the brain response. In conclusion, MSPC is a novel approach capable to assess high-order nonlinear interaction and timing in the nervous system.
Collapse
Affiliation(s)
- Yuan Yang
- 1 Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Teodoro Solis-Escalante
- 1 Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Jun Yao
- 2 Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andreas Daffertshofer
- 3 Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Alfred C Schouten
- 1 Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.,4 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Frans C T van der Helm
- 1 Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| |
Collapse
|
28
|
Eggermont JJ, Tass PA. Maladaptive neural synchrony in tinnitus: origin and restoration. Front Neurol 2015; 6:29. [PMID: 25741316 PMCID: PMC4330892 DOI: 10.3389/fneur.2015.00029] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/03/2015] [Indexed: 11/14/2022] Open
Abstract
Tinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting-state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane-potential changes in local neural groups as reflected in the local field potentials, resulting in the presence of oscillatory brain waves in the EEG. Noise-induced hearing loss, often resulting in tinnitus, causes a reorganization of the tonotopic map in auditory cortex and increased spontaneous firing rates and neural synchrony. Spontaneous brain rhythms rely on neural synchrony. Abnormal neural synchrony in tinnitus appears to be confined to specific frequency bands of brain rhythms. Increases in delta-band activity are generated by deafferented/deprived neuronal networks resulting from hearing loss. Coordinated reset (CR) stimulation was developed in order to specifically counteract such abnormal neuronal synchrony by desynchronization. The goal of acoustic CR neuromodulation is to desynchronize tinnitus-related abnormal delta-band oscillations. CR neuromodulation does not require permanent stimulus delivery in order to achieve long-lasting desynchronization or even a full-blown anti-kindling but may have cumulative effects, i.e., the effect of different CR epochs separated by pauses may accumulate. Unlike other approaches, acoustic CR neuromodulation does not intend to reduce tinnitus-related neuronal activity by employing lateral inhibition. The potential efficacy of acoustic CR modulation was shown in a clinical proof of concept trial, where effects achieved in 12 weeks of treatment delivered 4–6 h/day persisted through a preplanned 4-week therapy pause and showed sustained long-term effects after 10 months of therapy, leading to 75% responders.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology and Pharmacology, University of Calgary , Calgary, AB , Canada ; Department of Psychology, University of Calgary , Calgary, AB , Canada
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation (INM-7), Research Center Jülich , Jülich , Germany ; Department of Neurosurgery, Stanford University , Stanford, CA , USA ; Department of Neuromodulation, University of Cologne , Cologne , Germany
| |
Collapse
|
29
|
Eggermont JJ. Tinnitus and neural plasticity (Tonndorf lecture at XIth International Tinnitus Seminar, Berlin, 2014). Hear Res 2015; 319:1-11. [DOI: 10.1016/j.heares.2014.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 10/02/2014] [Indexed: 11/13/2022]
|
30
|
Cohen MX, Gulbinaite R. Five methodological challenges in cognitive electrophysiology. Neuroimage 2013; 85 Pt 2:702-10. [PMID: 23954489 DOI: 10.1016/j.neuroimage.2013.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/03/2013] [Accepted: 08/06/2013] [Indexed: 11/19/2022] Open
Abstract
Here we discuss five methodological challenges facing the current cognitive electrophysiology literature that address the roles of brain oscillations in cognition. The challenges focus on (1) unambiguous and consistent terminology, (2) neurophysiologically meaningful interpretations of results, (3) evaluation and comparison of different spatial filters often used in M/EEG research, (4) the role of multiscale interactions in brain and cognitive function, and (5) development of biophysically plausible cognitive models. We also suggest research directions that will help address these challenges. We hope that this paper will help foster discussions and debates about important themes in the study of how the brain's rhythmic patterns of spatiotemporal electrophysiological activity support cognition.
Collapse
Affiliation(s)
- Michael X Cohen
- Department of Psychology, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
31
|
Fontolan L, Krupa M, Hyafil A, Gutkin B. Analytical insights on theta-gamma coupled neural oscillators. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2013; 3:16. [PMID: 23945442 PMCID: PMC3848946 DOI: 10.1186/2190-8567-3-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
In this paper, we study the dynamics of a quadratic integrate-and-fire neuron, spiking in the gamma (30-100 Hz) range, coupled to a delta/theta frequency (1-8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to derive characteristic spiking times for the system in two distinct regimes (depending on parameter values): one regime where the gamma neuron is intrinsically oscillating in the absence of theta input, and a second one in which gamma spiking is directly gated by theta input, i.e., windows of gamma activity alternate with silence periods depending on the underlying theta phase. In the former case, we transform the equations such that the system becomes analogous to the Mathieu differential equation. By solving this equation, we can compute numerically the time to the first gamma spike, and then use singular perturbation theory to find successive spike times. On the other hand, in the excitable condition, we make direct use of singular perturbation theory to obtain an approximation of the time to first gamma spike, and then extend the result to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit formulas for the onset and offset of gamma spike burst during a theta cycle, and provide an estimation of the total number of spikes per theta cycle both for excitable and oscillator regimes.
Collapse
Affiliation(s)
- Lorenzo Fontolan
- Department of Fundamental Neurosciences, CMU, University of Geneva, 1 rue Michel Servet, 1211, Geneva, Switzerland
| | - Maciej Krupa
- INRIA Paris-Rocquencourt Research Centre, Domaine de Voluceau BP 105, 78153, Le Chesnay, France
| | - Alexandre Hyafil
- Group for Neural Theory, Départment des Etudes Cognitives, Ecole Normale Supérieure, 5 rue d’Ulm, 75005, Paris, France
| | - Boris Gutkin
- Group for Neural Theory, Départment des Etudes Cognitives, Ecole Normale Supérieure, 5 rue d’Ulm, 75005, Paris, France
| |
Collapse
|
32
|
Abstract
Theta and gamma frequency oscillations occur in the same brain regions and interact with each other, a process called cross-frequency coupling. Here, we review evidence for the following hypothesis: that the dual oscillations form a code for representing multiple items in an ordered way. This form of coding has been most clearly demonstrated in the hippocampus, where different spatial information is represented in different gamma subcycles of a theta cycle. Other experiments have tested the functional importance of oscillations and their coupling. These involve correlation of oscillatory properties with memory states, correlation with memory performance, and effects of disrupting oscillations on memory. Recent work suggests that this coding scheme coordinates communication between brain regions and is involved in sensory as well as memory processes.
Collapse
Affiliation(s)
- John E. Lisman
- Brandeis University, Biology Department & Volen Center for Complex Systems, 415 South Street-MS 008, Waltham, MA 02454-9110, 781-736-3145
| | - Ole Jensen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
33
|
Lepage KQ, Kramer MA, Eden UT. Some sampling properties of common phase estimators. Neural Comput 2013; 25:901-21. [PMID: 23339610 DOI: 10.1162/neco_a_00422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The instantaneous phase of neural rhythms is important to many neuroscience-related studies. In this letter, we show that the statistical sampling properties of three instantaneous phase estimators commonly employed to analyze neuroscience data share common features, allowing an analytical investigation into their behavior. These three phase estimators-the Hilbert, complex Morlet, and discrete Fourier transform-are each shown to maximize the likelihood of the data, assuming the observation of different neural signals. This connection, explored with the use of a geometric argument, is used to describe the bias and variance properties of each of the phase estimators, their temporal dependence, and the effect of model misspecification. This analysis suggests how prior knowledge about a rhythmic signal can be used to improve the accuracy of phase estimates.
Collapse
Affiliation(s)
- Kyle Q Lepage
- Department of Mathematics, Boston University, Boston, MA 02446, USA.
| | | | | |
Collapse
|
34
|
Functional Microcircuit Recruited during Retrieval of Object Association Memory in Monkey Perirhinal Cortex. Neuron 2013; 77:192-203. [DOI: 10.1016/j.neuron.2012.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 11/22/2022]
|
35
|
Li D, Li X, Hagihira S, Sleigh JW. Cross-frequency coupling during isoflurane anaesthesia as revealed by electroencephalographic harmonic wavelet bicoherence. Br J Anaesth 2012; 110:409-19. [PMID: 23161358 DOI: 10.1093/bja/aes397] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fourier bicoherence has previously been applied to investigate phase coupling in the EEG in anaesthesia. However, there are significant theoretical limitations regarding its sensitivity in detecting transient episodes of inter-frequency coupling. Therefore, we used a recently developed wavelet bicoherence method to investigate the cross-frequency coupling in the EEG of patients under isoflurane anaesthesia; examining the relationship between the patterns of wavelet bicoherence and the isoflurane concentrations. METHODS We analysed a set of previously published EEG data, obtained from 29 patients who underwent elective abdominal surgery under isoflurane anaesthesia. Artifact-free, 1 min EEG segments at different isoflurane concentrations were extracted from each subject and the wavelet bicoherence calculated for all pairs of frequencies from 0.5 to 20 Hz. RESULTS Isoflurane caused two peaks in the α (6-13 Hz) and slow δ (<1 Hz) regions of the bicoherence matrix diagonal. Higher concentrations of isoflurane shifted the α peak to lower frequencies [11.3 (0.9) Hz at 0.3% to 7.1 (1.2) Hz at 1.5%], as has been previously observed in the power spectra. Outside the diagonal, we also found a significant α peak that was phase-coupled to the slow δ waves; higher concentrations of isoflurane shifted this peak to lower frequencies [10.8 (1.2) to 7.7 (0.7) Hz]. CONCLUSIONS Isoflurane caused cross-frequency coupling between α and slow δ waves. Increasing isoflurane concentration slowed the α frequencies where the coupling had occurred. This phenomenon of α-δ coupling suggests that slow cortical oscillations organize the higher α band activity, which is consistent with other studies in natural sleep.
Collapse
Affiliation(s)
- D Li
- Institute of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | | | | | | |
Collapse
|
36
|
Mora Lopez C, Prodanov D, Braeken D, Gligorijevic I, Eberle W, Bartic C, Puers R, Gielen G. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2012; 6:101-110. [PMID: 23852975 DOI: 10.1109/tbcas.2011.2181842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD < 1% and a sampling rate of 30 kS/s per channel, while consuming a maximum of 70 μA per channel from a single 3.3 V. The ASIC was implemented in a 0.35 μm CMOS technology and has a total area of 5.6 × 4.5 mm². The recording system was successfully validated in in vitro and in vivo experiments, achieving simultaneous multichannel recordings of cell activity with satisfactory signal-to-noise ratios.
Collapse
|
37
|
Li D, Li X, Hagihira S, Sleigh JW. The effect of isoflurane anesthesia on the electroencephalogram assessed by harmonic wavelet bicoherence-based indices. J Neural Eng 2011; 8:056011. [DOI: 10.1088/1741-2560/8/5/056011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Eggermont JJ, Munguia R, Pienkowski M, Shaw G. Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex. PLoS One 2011; 6:e20046. [PMID: 21625385 PMCID: PMC3100317 DOI: 10.1371/journal.pone.0020046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/11/2011] [Indexed: 11/20/2022] Open
Abstract
Multi-electrode array recordings of spike and local field potential (LFP) activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs) and 492 frequency-tuning curves (FTCs) based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF) gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2–40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4–8 Hz, 8–16 Hz and 16–40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16–40 Hz filtered LFP, compared to those based on the 4–8 Hz, 8–16 Hz and 2–40 Hz filtered LFP. This suggests greater frequency specificity for the 16–40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2–40 Hz filtered LFP (5.5 mm) and the 16–40 Hz LFP (7.4 mm), whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2–40 Hz (and 16–40 Hz) LFP-pair correlations showed that about 16% (9%) of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
39
|
O'Connell MN, Falchier A, McGinnis T, Schroeder CE, Lakatos P. Dual mechanism of neuronal ensemble inhibition in primary auditory cortex. Neuron 2011; 69:805-17. [PMID: 21338888 DOI: 10.1016/j.neuron.2011.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 11/18/2022]
Abstract
Inhibition plays an essential role in shaping and refining the brain's representation of sensory stimulus attributes. In primary auditory cortex (A1), so-called "sideband" inhibition helps to sharpen the tuning of local neuronal responses. Several distinct types of anatomical circuitry could underlie sideband inhibition, including direct thalamocortical (TC) afferents, as well as indirect intracortical mechanisms. The goal of the present study was to characterize sideband inhibition in A1 and to determine its mechanism by analyzing laminar profiles of neuronal ensemble activity. Our results indicate that both lemniscal and nonlemniscal TC afferents play a role in inhibitory responses via feedforward inhibition and oscillatory phase reset, respectively. We propose that the dynamic modulation of excitability in A1 due to the phase reset of ongoing oscillations may alter the tuning of local neuronal ensembles and can be regarded as a flexible overlay on the more obligatory system of lemniscal feedforward type responses.
Collapse
Affiliation(s)
- Monica N O'Connell
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | | | | | | | |
Collapse
|
40
|
Knyazev GG. Cross-frequency coupling of brain oscillations: an impact of state anxiety. Int J Psychophysiol 2011; 80:236-45. [PMID: 21458502 DOI: 10.1016/j.ijpsycho.2011.03.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
In recent studies, statistical relations among activities in different frequency EEG bands have been reported. Most of these studies investigate within-subject cross-frequency relations, such as amplitude-amplitude, phase-amplitude and phase-phase coupling between different frequencies. All these cross-frequency interactions are considered to be transient correlates of information processing. However, some authors suggested that a particular pattern of amplitude-amplitude relations among different frequencies may be associated with relatively stable states or even traits. Particularly delta-beta amplitude-amplitude correlation measured in the between-subject domain was shown to lawfully increase in some presumably anxiogenic conditions and in some pathological groups. The main purpose of this paper was to further explore the phenomenon of between-subject delta-beta correlation in terms of its spatial localization, relatedness to state anxiety, and similarity to within-subject amplitude-to-amplitude and phase-to-amplitude coupling. Independent component analysis was used to identify temporally correlated spatial patterns that most reliably show the phenomenon of between-subject delta-beta correlation. Results of this analysis show that in an anxiogenic situation, delta-beta correlation increases in a network of cortical areas which includes the orbitofrontal and the anterior cingulate cortices as its main node. This increase of correlation is accompanied by an increase of delta power and connectivity in the same cortical regions. Analysis of the within-subject delta-beta amplitude-to-amplitude and phase-to-amplitude coupling showed that in an anxiogenic situation, in subjects with higher scores on state anxiety they also tend to increase in the same set of cortical areas.
Collapse
Affiliation(s)
- Gennady G Knyazev
- State Research Institute of Physiology, Siberian Branch of the Russian Academy of Medical Sciences, Timakova Str., 4, Novosibirsk 630117, Russia.
| |
Collapse
|
41
|
Cela-Conde CJ, Agnati L, Huston JP, Mora F, Nadal M. The neural foundations of aesthetic appreciation. Prog Neurobiol 2011; 94:39-48. [PMID: 21421021 DOI: 10.1016/j.pneurobio.2011.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 02/08/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
The study of the cognitive and neural underpinnings of aesthetic appreciation by means of neuroimaging techniques has yielded a wealth of fascinating information. Although the results of these studies have been somewhat divergent, here we provide an integrative view of the early approaches, which identified some of the core mechanisms involved in aesthetic preference. Then, a number of more specific issues under the perspective of recent work are addressed. Finally, we propose a framework to accommodate these findings and we explore future prospects for the emerging field of neuroaesthetics.
Collapse
Affiliation(s)
- Camilo J Cela-Conde
- Human Evolution and Cognition (IFISC-CSIC), University of the Balearic Islands, Spain.
| | | | | | | | | |
Collapse
|
42
|
Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci 2011; 14:506-15. [PMID: 20932795 DOI: 10.1016/j.tics.2010.09.001] [Citation(s) in RCA: 1322] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Recent studies suggest that cross-frequency coupling (CFC) might play a functional role in neuronal computation, communication and learning. In particular, the strength of phase-amplitude CFC differs across brain areas in a task-relevant manner, changes quickly in response to sensory, motor and cognitive events, and correlates with performance in learning tasks. Importantly, whereas high-frequency brain activity reflects local domains of cortical processing, low-frequency brain rhythms are dynamically entrained across distributed brain regions by both external sensory input and internal cognitive events. CFC might thus serve as a mechanism to transfer information from large-scale brain networks operating at behavioral timescales to the fast, local cortical processing required for effective computation and synaptic modification, thus integrating functional systems across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Ryan T Canolty
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | | |
Collapse
|
43
|
Onslow ACE, Bogacz R, Jones MW. Quantifying phase-amplitude coupling in neuronal network oscillations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:49-57. [PMID: 20869387 DOI: 10.1016/j.pbiomolbio.2010.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/06/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022]
Abstract
Neuroscience time series data from a range of techniques and species reveal complex, non-linear interactions between different frequencies of neuronal network oscillations within and across brain regions. Here, we briefly review the evidence that these nested, cross-frequency interactions act in concert with linearly covariant (within-frequency) activity to dynamically coordinate functionally related neuronal ensembles during behaviour. Such studies depend upon reliable quantification of cross-frequency coordination, and we compare the properties of three techniques used to measure phase-amplitude coupling (PAC)--Envelope-to-Signal Correlation (ESC), the Modulation Index (MI) and Cross-Frequency Coherence (CFC)--by standardizing their filtering algorithms and systematically assessing their robustness to noise and signal amplitude using artificial signals. Importantly, we also introduce a freely-downloadable method for estimating statistical significance of PAC, a step overlooked in the majority of published studies. We find that varying data length and noise levels leads to the three measures differentially detecting false positives or correctly identifying frequency bands of interaction; these conditions should therefore be taken into careful consideration when selecting PAC analyses. Finally, we demonstrate the utility of the three measures in quantifying PAC in local field potential data simultaneously recorded from rat hippocampus and prefrontal cortex, revealing a novel finding of prefrontal cortical theta phase modulating hippocampal gamma power. Future adaptations that allow detection of time-variant PAC should prove essential in deciphering the roles of cross-frequency coupling in mediating or reflecting nervous system function.
Collapse
|
44
|
Triphasic dynamics of stimulus-dependent information flow between single neurons in macaque inferior temporal cortex. J Neurosci 2010; 30:10407-21. [PMID: 20685983 DOI: 10.1523/jneurosci.0135-10.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functional connectivity between cortical neurons is not static and is known to exhibit contextual modulations in terms of the coupling strength. Here we hypothesized that the information flow in a cortical local circuit exhibits complex forward-and-back dynamics, and conducted Granger causality analysis between the neuronal spike trains that were simultaneously recorded from macaque inferior temporal (IT) cortex while the animals performed a visual object discrimination task. Spikes from neuron pairs with a displaced peak on the cross-correlogram (CCG) showed Granger causality in the gamma-frequency range (30-80 Hz) with the dominance in the direction consistent with the CCG peak (forward direction). Although, in a classical view, the displaced CCG peak has been interpreted as an indicative of a pauci-synaptic serial linkage, temporal dynamics of the gamma Granger causality after stimulus onset exhibited a more complex triphasic pattern, with a transient forward component followed by a slowly developing backward component and subsequent reappearance of the forward component. These triphasic dynamics of causality were not explained by the firing rate dynamics and were not observed for cell pairs that exhibited a center peak on the CCG. Furthermore, temporal dynamics of Granger causality depended on the feature configuration within the presented object. Together, these results demonstrate that the classical view of functional connectivity could be expanded to incorporate more complex forward-and-back dynamics and also imply that multistage processing in the recognition of visual objects might be implemented by multiphasic dynamics of directional information flow between single neurons in a local circuit in the IT cortex.
Collapse
|
45
|
Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010; 90:1195-268. [PMID: 20664082 DOI: 10.1152/physrev.00035.2008] [Citation(s) in RCA: 1221] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
46
|
Ruan M, Young CK, McNaughton N. Minimal driving of hippocampal theta by the supramammillary nucleus during water maze learning. Hippocampus 2010; 21:1074-81. [PMID: 20865741 DOI: 10.1002/hipo.20821] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2010] [Indexed: 11/05/2022]
Abstract
Previous studies have shown only modest effects of supramammillary nucleus (SuM) dysfunction on theta frequency and learning in the water maze (WM), with larger effects in other tasks. However, theta recorded from SuM, and used to trigger the production of theta-like oscillations in the hippocampus, produced reversal of the deficit in WM learning produced by theta blocking. We explored this apparent inconsistency by analyzing the relationship between SuM and hippocampal theta in the control group of this theta-blocking experiment using coherence, phase analysis, and the directed transfer function. We found little evidence of an influence of SuM on the hippocampus in the bulk of WM learning-with some possibility of SuM becoming involved briefly later in learning. A learning-related increase in coherence was observed in conjunction with gradual phase reorganization of hippocampal theta in relation to SuM theta. This change in phase dynamics between the two structures was also correlated with a relative increase of the estimated direction of theta propagation from the SuM to the hippocampus. These results are consistent with the previous weak effects of SuM lesions and suggest that the use of SuM as a source to trigger hippocampal theta and recover function is likely to be due to coherence between SuM and some other structure that normally controls hippocampal theta during WM learning.
Collapse
Affiliation(s)
- Ming Ruan
- Department of Psychology and the Neuroscience Research Centre, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
47
|
Tort ABL, Komorowski R, Eichenbaum H, Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol 2010; 104:1195-210. [PMID: 20463205 DOI: 10.1152/jn.00106.2010] [Citation(s) in RCA: 816] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal oscillations of different frequencies can interact in several ways. There has been particular interest in the modulation of the amplitude of high-frequency oscillations by the phase of low-frequency oscillations, since recent evidence suggests a functional role for this type of cross-frequency coupling (CFC). Phase-amplitude coupling has been reported in continuous electrophysiological signals obtained from the brain at both local and macroscopic levels. In the present work, we present a new measure for assessing phase-amplitude CFC. This measure is defined as an adaptation of the Kullback-Leibler distance-a function that is used to infer the distance between two distributions-and calculates how much an empirical amplitude distribution-like function over phase bins deviates from the uniform distribution. We show that a CFC measure defined this way is well suited for assessing the intensity of phase-amplitude coupling. We also review seven other CFC measures; we show that, by some performance benchmarks, our measure is especially attractive for this task. We also discuss some technical aspects related to the measure, such as the length of the epochs used for these analyses and the utility of surrogate control analyses. Finally, we apply the measure and a related CFC tool to actual hippocampal recordings obtained from freely moving rats and show, for the first time, that the CA3 and CA1 regions present different CFC characteristics.
Collapse
Affiliation(s)
- Adriano B L Tort
- Edmond and Lily Safra International Institute of Neuroscience of Natal and Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | | | | | |
Collapse
|
48
|
Torres FV, da Silva Filho M, Antunes C, Kalinine E, Antoniolli E, Portela LV, Souza DO, Tort AB. Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Exp Neurol 2010; 221:296-306. [DOI: 10.1016/j.expneurol.2009.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/21/2009] [Accepted: 11/14/2009] [Indexed: 10/20/2022]
|