1
|
Direktor M, Gass P, Inta D. Understanding the Therapeutic Action of Antipsychotics: From Molecular to Cellular Targets With Focus on the Islands of Calleja. Int J Neuropsychopharmacol 2024; 27:pyae018. [PMID: 38629703 PMCID: PMC11046981 DOI: 10.1093/ijnp/pyae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding of the pathophysiology of schizophrenia as well as the mechanisms of action of antipsychotic drugs remains a challenge for psychiatry. The demonstration of the therapeutic efficacy of several new atypical drugs targeting multiple different receptors, apart from the classical dopamine D2 receptor as initially postulated unique antipsychotic target, complicated even more conceptualization efforts. Here we discuss results suggesting a main role of the islands of Calleja, still poorly studied GABAergic granule cell clusters in the ventral striatum, as cellular targets of several innovative atypical antipsychotics (clozapine, cariprazine, and xanomeline/emraclidine) effective in treating also negative symptoms of schizophrenia. We will emphasize the potential role of dopamine D3 and M4 muscarinic acetylcholine receptor expressed at the highest level by the islands of Calleja, as well as their involvement in schizophrenia-associated neurocircuitries. Finally, we will discuss the implications of new data showing ongoing adult neurogenesis of the islands of Calleja as a very promising antipsychotic target linking long-life neurodevelopment and dopaminergic dysfunction in the striatum.
Collapse
Affiliation(s)
- Merve Direktor
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany (Mrs Direktor and Dr Gass)
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany (Mrs Direktor and Dr Gass)
| | - Dragos Inta
- Translational Psychiatry, Department of Community Health , and Food Research and Innovation Center (FRIC)
- University of Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Switzerland
| |
Collapse
|
2
|
Noh B, Blasco‐Conesa MP, Rahman SM, Monga S, Ritzel R, Guzman G, Lai Y, Ganesh BP, Urayama A, McCullough LD, Moruno‐Manchon JF. Iron overload induces cerebral endothelial senescence in aged mice and in primary culture in a sex-dependent manner. Aging Cell 2023; 22:e13977. [PMID: 37675802 PMCID: PMC10652299 DOI: 10.1111/acel.13977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Iron imbalance in the brain negatively affects brain function. With aging, iron levels increase in the brain and contribute to brain damage and neurological disorders. Changes in the cerebral vasculature with aging may enhance iron entry into the brain parenchyma, leading to iron overload and its deleterious consequences. Endothelial senescence has emerged as an important contributor to age-related changes in the cerebral vasculature. Evidence indicates that iron overload may induce senescence in cultured cell lines. Importantly, cells derived from female human and mice generally show enhanced senescence-associated phenotype, compared with males. Thus, we hypothesize that cerebral endothelial cells (CEC) derived from aged female mice are more susceptible to iron-induced senescence, compared with CEC from aged males. We found that aged female mice, but not males, showed cognitive deficits when chronically treated with ferric citrate (FC), and their brains and the brain vasculature showed senescence-associated phenotype. We also found that primary culture of CEC derived from aged female mice, but not male-derived CEC, exhibited senescence-associated phenotype when treated with FC. We identified that the transmembrane receptor Robo4 was downregulated in the brain vasculature and in cultured primary CEC derived from aged female mice, compared with those from male mice. We discovered that Robo4 downregulation contributed to enhanced vulnerability to FC-induced senescence. Thus, our study identifies Robo4 downregulation as a driver of senescence induced by iron overload in primary culture of CEC and a potential risk factor of brain vasculature impairment and brain dysfunction.
Collapse
Affiliation(s)
- Brian Noh
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Maria Pilar Blasco‐Conesa
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Syed Mushfiqur Rahman
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Sheelu Monga
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Rodney Ritzel
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Gary Guzman
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Yun‐Ju Lai
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
- Solomont School of NursingZuckerberg College of Health SciencesUniversity of Massachusetts LowellLowellMassachusettsUSA
| | - Bhanu Priya Ganesh
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Akihiko Urayama
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Louise D. McCullough
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Jose Felix Moruno‐Manchon
- Department of NeurologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
3
|
MUTYH Actively Contributes to Microglial Activation and Impaired Neurogenesis in the Pathogenesis of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8635088. [PMID: 34970419 PMCID: PMC8714343 DOI: 10.1155/2021/8635088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a major risk factor for Alzheimer's disease (AD), which is characterized by brain atrophy, amyloid plaques, neurofibrillary tangles, and loss of neurons. 8-Oxoguanine, a major oxidatively generated nucleobase highly accumulated in the AD brain, is known to cause neurodegeneration. In mammalian cells, several enzymes play essential roles in minimizing the 8-oxoguanine accumulation in DNA. MUTYH with adenine DNA glycosylase activity excises adenine inserted opposite 8-oxoguanine in DNA. MUTYH is reported to actively contribute to the neurodegenerative process in Parkinson and Huntington diseases and some mouse models of neurodegenerative diseases by accelerating neuronal dysfunction and microgliosis under oxidative conditions; however, whether or not MUTYH is involved in AD pathogenesis remains unclear. In the present study, we examined the contribution of MUTYH to the AD pathogenesis. Using postmortem human brains, we showed that various types of MUTYH transcripts and proteins are expressed in most hippocampal neurons and glia in both non-AD and AD brains. We further introduced MUTYH deficiency into App NL-G-F/NL-G-F knock-in AD model mice, which produce humanized toxic amyloid-β without the overexpression of APP protein, and investigated the effects of MUTYH deficiency on the behavior, pathology, gene expression, and neurogenesis. MUTYH deficiency improved memory impairment in App NL-G-F/NL-G-F mice, accompanied by reduced microgliosis. Gene expression profiling strongly suggested that MUTYH is involved in the microglial response pathways under AD pathology and contributes to the phagocytic activity of disease-associated microglia. We also found that MUTYH deficiency ameliorates impaired neurogenesis in the hippocampus, thus improving memory impairment. In conclusion, we propose that MUTYH, which is expressed in the hippocampus of AD patients as well as non-AD subjects, actively contributes to memory impairment by inducing microgliosis with poor neurogenesis in the preclinical AD phase and that MUTYH is a novel therapeutic target for AD, as its deficiency is highly beneficial for ameliorating AD pathogenesis.
Collapse
|
4
|
Mizuno Y, Abolhassani N, Mazzei G, Saito T, Saido TC, Yamasaki R, Kira JI, Nakabeppu Y. Deficiency of MTH1 and/or OGG1 increases the accumulation of 8-oxoguanine in the brain of the App NL-G-F/NL-G-F knock-in mouse model of Alzheimer's disease, accompanied by accelerated microgliosis and reduced anxiety-like behavior. Neurosci Res 2021; 177:118-134. [PMID: 34838904 DOI: 10.1016/j.neures.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022]
Abstract
Oxidative stress is a major risk factor for Alzheimer's disease (AD). Among various oxidized molecules, the marked accumulation of an oxidized form of guanine, 8-oxo-7,8-dihydroguanine (8-oxoG), is observed in the AD brain. 8-oxo-2'-deoxyguanosine triphosphatase (MTH1) and 8-oxoG DNA glycosylase (OGG1) minimize the 8-oxoG accumulation in DNA, and their expression is decreased in the AD brain. MTH1 and/or OGG1 may suppress the pathogenesis of AD; however, their exact roles remain unclear. We evaluated the roles of MTH1 and OGG1 during the pathogenesis of AD using AppNL-G-F/NL-G-F knock-in mice (a preclinical AD model). Six-month-old female AppNL-G-F/NL-G-F mice with MTH1 and/or OGG1 deficiency exhibited reduced anxiety-related behavior, but their cognitive and locomotive functions were unchanged; the alteration was less evident in 12-month-old mice. MTH1 and/or OGG1 deficiency accelerated the 8-oxoG accumulation and microgliosis in the amygdala and cortex of six-month-old mice; the alteration was less evident in 12-month-old mice. Astrocytes and neurons were not influenced. We showed that MTH1 and OGG1 are essential for minimizing oxidative DNA damage in the AppNL-G-F/NL-G-F brain, and the effects are age-dependent. MTH1 and/or OGG1 deficiency reduced anxiety-related behavior in AppNL-G-F/NL-G-F mice with a significant acceleration of the 8-oxoG burden and microgliosis, especially in the cortex and amygdala.
Collapse
Affiliation(s)
- Yuri Mizuno
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Guianfranco Mazzei
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Translational Neuroscience Center, Graduate School of Medicine, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Liu Z, Chen W, Zhang Z, Wang J, Yang YK, Hai L, Wei Y, Qiao J, Sun Y. Whole-Genome Methylation Analysis Revealed ART-Specific DNA Methylation Pattern of Neuro- and Immune-System Pathways in Chinese Human Neonates. Front Genet 2021; 12:696840. [PMID: 34589113 PMCID: PMC8473827 DOI: 10.3389/fgene.2021.696840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
The DNA methylation of human offspring can change due to the use of assisted reproductive technology (ART). In order to find the differentially methylated regions (DMRs) in ART newborns, cord blood maternal cell contamination and parent DNA methylation background, which will add noise to the real difference, must be removed. We analyzed newborns’ heel blood from six families to identify the DMRs between ART and natural pregnancy newborns, and the genetic model of methylation was explored, meanwhile we analyzed 32 samples of umbilical cord blood of infants born with ART and those of normal pregnancy to confirm which differences are consistent with cord blood data. The DNA methylation level was lower in ART-assisted offspring at the whole genome-wide level. Differentially methylated sites, DMRs, and cord blood differentially expressed genes were enriched in the important pathways of the immune system and nervous system, the genetic patterns of DNA methylation could be changed in the ART group. A total of three imprinted genes and 28 housekeeping genes which were involved in the nervous and immune systems were significant different between the two groups, six of them were detected both in heel blood and cord blood. We concluded that there is an ART-specific DNA methylation pattern involved in neuro- and immune-system pathways of human ART neonates, providing an epigenetic basis for the potential long-term health risks in ART-conceived neonates.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Wei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zilong Zhang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,Tianjin Novogene Bioinformatic Technology Co., Ltd.,, Tianjin, China
| | - Junyun Wang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yi-Kun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yingli Sun
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| |
Collapse
|
6
|
Mazzei G, Ikegami R, Abolhassani N, Haruyama N, Sakumi K, Saito T, Saido TC, Nakabeppu Y. A high-fat diet exacerbates the Alzheimer's disease pathology in the hippocampus of the App NL-F/NL-F knock-in mouse model. Aging Cell 2021; 20:e13429. [PMID: 34245097 PMCID: PMC8373331 DOI: 10.1111/acel.13429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and diabetes mellitus are major risk factors for Alzheimer's disease (AD), and studies with transgenic mouse models of AD have provided supportive evidence with some controversies. To overcome potential artifacts derived from transgenes, we used a knock‐in mouse model, AppNL−F/NL−F, which accumulates Aβ plaques from 6 months of age and shows mild cognitive impairment at 18 months of age, without the overproduction of APP. In the present study, 6‐month‐old male AppNL−F/NL−F and wild‐type mice were fed a regular or high‐fat diet (HFD) for 12 months. HFD treatment caused obesity and impaired glucose tolerance (i.e., T2DM conditions) in both wild‐type and AppNL−F/NL−F mice, but only the latter animals exhibited an impaired cognitive function accompanied by marked increases in both Aβ deposition and microgliosis as well as insulin resistance in the hippocampus. Furthermore, HFD‐fed AppNL−F/NL−F mice exhibited a significant decrease in volume of the granule cell layer in the dentate gyrus and an increased accumulation of 8‐oxoguanine, an oxidized guanine base, in the nuclei of granule cells. Gene expression profiling by microarrays revealed that the populations of the cell types in hippocampus were not significantly different between the two mouse lines, regardless of the diet. In addition, HFD treatment decreased the expression of the Aβ binding protein transthyretin (TTR) in AppNL−F/NL−F mice, suggesting that the depletion of TTR underlies the increased Aβ deposition in the hippocampus of HFD‐fed AppNL−F/NL−F mice.
Collapse
Affiliation(s)
- Guianfranco Mazzei
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Ryohei Ikegami
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Naoki Haruyama
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience RIKEN Center for Brain Science Saitama Japan
- Department of Neurocognitive Science Institute of Brain Science Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience RIKEN Center for Brain Science Saitama Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
| |
Collapse
|
7
|
Oka S, Leon J, Sakumi K, Abolhassani N, Sheng Z, Tsuchimoto D, LaFerla FM, Nakabeppu Y. MTH1 and OGG1 maintain a low level of 8-oxoguanine in Alzheimer's brain, and prevent the progression of Alzheimer's pathogenesis. Sci Rep 2021; 11:5819. [PMID: 33758207 PMCID: PMC7988129 DOI: 10.1038/s41598-021-84640-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
8-Oxoguanine (8-oxoG), a major oxidative base lesion, is highly accumulated in Alzheimer’s disease (AD) brains during the pathogenic process. MTH1 hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, thereby avoiding 8-oxo-dG incorporation into DNA. 8-OxoG DNA glycosylase-1 (OGG1) excises 8-oxoG paired with cytosine in DNA, thereby minimizing 8-oxoG accumulation in DNA. Levels of MTH1 and OGG1 are significantly reduced in the brains of sporadic AD cases. To understand how 8-oxoG accumulation in the genome is involved in AD pathogenesis, we established an AD mouse model with knockout of Mth1 and Ogg1 genes in a 3xTg-AD background. MTH1 and OGG1 deficiency increased 8-oxoG accumulation in nuclear and, to a lesser extent, mitochondrial genomes, causing microglial activation and neuronal loss with impaired cognitive function at 4–5 months of age. Furthermore, minocycline, which inhibits microglial activation and reduces neuroinflammation, markedly decreased the nuclear accumulation of 8-oxoG in microglia, and inhibited microgliosis and neuronal loss. Gene expression profiling revealed that MTH1 and OGG1 efficiently suppress progression of AD by inducing various protective genes against AD pathogenesis initiated by Aß/Tau accumulation in 3xTg-AD brain. Our findings indicate that efficient suppression of 8-oxoG accumulation in brain genomes is a new approach for prevention and treatment of AD.
Collapse
Affiliation(s)
- Sugako Oka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66010, USA
| | - Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Zijing Sheng
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Funahashi S, Okazaki Y, Akatsuka S, Takahashi T, Sakumi K, Nakabeppu Y, Toyokuni S. Mth1 deficiency provides longer survival upon intraperitoneal crocidolite injection in female mice. Free Radic Res 2020; 54:195-205. [PMID: 32183600 DOI: 10.1080/10715762.2020.1743285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exposure to asbestos fiber is central to mesothelial carcinogenesis. Recent sequencing studies on human and rodent malignant mesothelioma (MM) revealed frequently mutated genes, including CDKN2A, BAP1 and NF2. Crocidolite directly or indirectly catalyses the generation of hydroxyl radicals, which appears to be the major driving force for mesothelial mutations. DNA base modification is an oxidative DNA damage mechanism, where 8-hydroxy-2'-deoxyguanosine (8-OHdG) is the most abundant modification both physiologically and pathologically. Multiple distinct mechanisms work together to decrease the genomic level of 8-OHdG through the enzymatic activities of Mutyh, Ogg1 and Mth1. Knockout of one or multiple enzymes is not lethal but increases the incidence of tumors. Here, we used single knockout (KO) mice to test whether the deficiency of these three genes affects the incidence and prognosis of asbestos-induced MM. Intraperitoneal injection of 3 mg crocidolite induced MM at a fraction of 14.8% (4/27) in Mth1 KO, 41.4% (12/29) in Mutyh KO and 24.0% (6/25) in Ogg1 KO mice, whereas 31.7% (20/63) induction was observed in C57BL/6 wild-type (Wt) mice. The lifespan of female Mth1 KO mice was longer than that of female Wt mice (p = 0.0468). Whole genome scanning of MM with array-based comparative genomic hybridization revealed rare genomic alterations compared to MM in rats and humans. These results indicate that neither Mutyh deficiency nor Ogg1 deficiency promotes crocidolite-induced MM in mice, but the sanitizing nucleotide pool with Mth1 is advantageous in crocidolite-induced mesothelial carcinogenesis.
Collapse
Affiliation(s)
- Satomi Funahashi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Food and Nutritional Environment, Kinjo Gakuin University of Human Life and Environment, Nagoya, Aichi, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyusyu University, Higashi-ku, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyusyu University, Higashi-ku, Fukuoka, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Endonuclease VIII-like 1 deficiency impairs survival of newly generated hippocampal neurons and memory performance in young-adult male mice. Life Sci 2020; 254:117755. [PMID: 32437792 DOI: 10.1016/j.lfs.2020.117755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
AIMS Efficient memory formation in rodents depends on adult neurogenesis in the subgranular zone of the hippocampus, and mounting evidence suggests that deficiencies in initiating repair of oxidatively induced DNA damage may impair neurogenesis. Hence, we aimed to determine whether loss of the DNA glycosylase, endonuclease VIII-like 1 (Neil1), affects hippocampal neurogenesis and memory performance in young-adult mice. MAIN METHODS Eight-week-old male wild-type and Neil1-deficient (Neil1-/-) mice were treated with bromodeoxyuridine to track neuronal proliferation and differentiation. A neurosphere formation assay was further used to measure neuroprogenitor proliferative capacity. Hippocampus-related memory functions were assessed with Y-maze spontaneous alternation and novel object recognition tests. KEY FINDINGS Young-adult male Neil1-/- mice exhibited diminished adult hippocampal neurogenesis in the dentate gyrus, probably as a result of poor survival of newly proliferated neurons. Furthermore, the Y-maze spontaneous alternation and novel object recognition tests respectively revealed that Neil1 deficiency impairs spatial and non-spatial hippocampus-related memory functions. We also found that expression of p53, a central regulator of apoptosis, was upregulated in the dentate gyrus of Neil1-/- mice, while the level of β-catenin, a key cell survival molecule, was downregulated. SIGNIFICANCE The DNA glycosylase, Neil1, promotes successful hippocampal neurogenesis and learning and memory in young-adult mice.
Collapse
|
10
|
Ou Q, Ma N, Yu Z, Wang R, Hou Y, Wang Z, Chen F, Li W, Bi J, Ma J, Zhang L, Su Q, Huang X. Nudix hydrolase 1 is a prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:7363-7379. [PMID: 32341205 PMCID: PMC7202498 DOI: 10.18632/aging.103083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
We investigated the prognostic significance of Nudix hydrolase 1 (NUDT1) in hepatocellular carcinoma (HCC). NUDT1 mRNA and protein levels were significantly higher in HCC tissues than normal liver tissues. The level of NUDT1 expression correlated with tumor grade, stage, size, differentiation, degree of vascular invasion, overall survival (OS), and disease-free survival (DFS) in HCC patients. Multivariate analysis showed that NUDT1 expression was an independent prognostic factor for OS and DFS in HCC patients. We constructed a prognostic nomogram with NUDT1 expression, AFP levels, vascular invasion, Child-Pugh classification, age, sex, AJCC staging, and tumor differentiation as variables. This nomogram was highly accurate in predicting the 5-year OS of HCC patients (c-index= 0.709; AUC= 0.740). NUDT1 silencing in HCC cells significantly reduced their survival, colony formation, migration, and invasiveness. Gene set enrichment analysis showed that biological pathways related to cell cycle, fatty acid metabolism, bile acid and bile salt metabolism, and PLK1 signaling were associated with NUDT1, as were the gene ontology terms "DNA binding transcription activator activity," "RNA polymerase II," "nuclear division," and "transmembrane transporter activity." Our study thus demonstrates that NUDT1 is a prognostic biomarker with therapeutic potential in HCC patients.
Collapse
Affiliation(s)
- Qifeng Ou
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ning Ma
- Department of Gastrointestinal Surgery and Hernia Center, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - Zheng Yu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rongchang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Yucheng Hou
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ziming Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Fan Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyi Ma
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Longjuan Zhang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiao Su
- Animal Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|